Template Version: Error! Unknown document property name.

Appendix B

Appendix B

Geotechnical Data Report

GEOTECHNICAL ENGINEERS

CITY OF WINNIPEG, WATER AND WASTE DEPARTMENT FERRY ROAD AND RIVERBEND CSR PROJECT CONTRACT 6 – RUTLAND TRUNK SEWER GEOTECHNICAL DATA REPORT WINNIPEG, MANITOBA

Prepared for:

Tetra Tech Canada Inc. Winnipeg, Manitoba

May 2022

May 4, 2022

File No. 143691.7

Tetra Tech Canada Inc. 161 Portage Avenue East, Suite 400 Winnipeg, MB R3B 0Y4

Attn: Kirby McRae, P.Eng.

RE: City of Winnipeg Ferry Road and Riverbend CSR Project – Contract 6 Rutland Trunk Sewer Geotechnical Investigation

Dyregrov Robinson Inc. is pleased to submit our final geotechnical data report from the geotechnical investigation that has been completed for the proposed Rutland Trunk Sewer in Winnipeg, Manitoba.

If we can be of further assistance, please contact the undersigned directly.

Sincerely,

DYREGROV ROBINSON INC.

per

Gil Robinson, M.Sc., P.Eng President

Distribution List

# of Hard Copies	PDF Required	Association / Company Name
0	Yes	Tetra Tech Canada Inc.

DYREGROV ROBINSON INC.

Report Prepared By:

per

Gil Robinson, M.Sc., P.Eng. Senior Geotechnical Engineer

Table of Contents

1.0	INTRO	DUCTION	1
2.0	PROJE	CT UNDERSTANDING	1
3.0	BACKG	ROUND INFORMATION	1
	3.1 3.2	Regional Geology	1 1 2 2
4.0	FIELD I	NVESTIGATION	3
5.0	SUBSU	RFACE CONDITIONS	5
	5.1 5.2 5.3 5.4 5.5 5.6 5.7	Pavement, Topsoil and Fill Materials Alluvium Silt Silt Clay (Glaciolacustrine) Glacial Silt Till Bedrock 1 Test Hole Stability and Groundwater Conditions 1	5 5 6 6 8 0 1
6.0	REFER	ENCES	1
7.0	CLOSU	RE	1

- APPENDIX A: Test Hole Location Plan and Test Hole Summary Table
- APPENDIX B: 2019 / 2020 Test Hole Logs and 2012 Test Hole Logs
- APPENDIX C: Glacial Till and Bedrock Core Sample Photographs and Bedrock Core Sample Summary
- **APPENDIX D: Laboratory Testing Results**
- **APPENDIX E: Laboratory Testing Plots**
- **APPENDIX F: Standard Penetration Testing Results**
- APPENDIX G: SINTEF Soil Abrasion Testing (SAT), Cerchar Abrasivity Index (CAI) testing, Uniaxial Compressive Strength (UCS) testing, Petrographic Analysis
- APPENDIX H: Ferry Road and Riverbend CSR Rutland Trunk Sewer Geophysical Survey
- APPENDIX I: Ferry Road Piezometer Hydraulic Conductivity Testing

1.0 INTRODUCTION

Dyregrov Robinson Inc. (DRI) was retained by Tetra Tech Inc. to perform a geotechnical investigation for the proposed Rutland Trunk Sewer which will be installed as part of the Ferry Road and Riverbend Combined Sewer Relief (CSR) Project in Winnipeg, Manitoba.

The purpose of the geotechnical investigation was to explore the subsurface conditions (i.e. soil and groundwater) along the general route of the proposed trunk sewer. This geotechnical data report describes the geotechnical investigation program and presents the field and laboratory testing results from the investigation.

2.0 PROJECT UNDERSTANDING

It is our understanding the trunk sewer pipe will be approximately 2400 mm in diameter and will be about 1600 m long with preliminary (estimated) pipe invert depths that are about 8 to 9 m below ground surface. Much of the pipe alignment will be located in the right-of-way along Rutland Street from Silver Avenue to Portage Avenue. The pipe will extend approximately 345 m north of Silver Avenue across the grounds of the Rods Football Club. South of Portage Avenue the pipe alignment will run through the St. James Collegiate property and the Bourkevale Community Centre site down to the Assiniboine River where an outfall structure will be constructed.

3.0 BACKGROUND INFORMATION

3.1 Regional Geology

Winnipeg is centered around the confluence of the Red and Assiniboine Rivers in the Red River Valley.

3.1.1 Bedrock Geology

The overburden stratigraphy is underlain by an extensive regional fractured bedrock aquifer consisting of limestones and dolomites of the Stony Mountain and Red River Formations. Due to pre-glacial erosion and subsequent deposition, the bedrock surface may include features such as infilled caverns, sinkholes and crevasses. These features may be infilled with clays, sands and glacial till materials.

3.1.2 Surficial Geology

The general soil stratigraphy in Winnipeg includes an upper complex zone overlying a thick deposit of glaciolacustrine clay. Glacial till is typically present beneath the clay deposit. In some locations, alluvial deposits are also present along the riverbanks and can overlay the clay and/or glacial till deposits.

The upper complex zone is generally about 1.5 to 3 m thick and can extend to depths of 4.5 m. The soils often encountered in the complex zone include black clays with trace organics, silt and silty clays. The silt and silty clays may have a laminated structure. The silt layers vary significantly in thickness (a few mm to 3 m) and lateral extent and may be water bearing (i.e. perched water table).

Glaciolacustrine silty clays are present beneath the upper complex zone and can vary in thickness from a few metres to 15 m (approx.). The clay is generally found to be brown and/or mottled brown / grey to depths of 5 to 7 m below grade and is grey below. The brown and mottled brown / grey clays usually have a stiff consistency, and the grey clays are usually firm to stiff. In some areas of Winnipeg, the consistency

of the clay can be relatively soft. The clay is known to have high plasticity and is expansive. Although infrequent, boulders have been encountered within the clay layer. Towards the bottom of the clay deposit, the composition may change including higher silt content and an increasing number of glacial till inclusions; this is sometimes referred to as a clay – till transition zone. (Teller, 1976 and Department of Geologic Engineering, 1983)

Glacial till is typically present beneath the silty clay deposit. The thickness of the till deposit is variable ranging from nothing to more than 9 m; it is often found to be 3 to 6 m thick. The glacial till deposit in the Winnipeg area is typically a heterogeneous mixture of sand, gravel, cobble and boulder size materials within a predominantly silt matrix that has a low but variable clay content. The boulders can range in size from 300 mm to 1500 mm, or more. Pockets of non-combustible gas are sometimes encountered and may be under pressure. The nature of the gas does not appear to be well documented, but the author is aware that at least one person died in the 1960's while working in a caisson shaft in downtown Winnipeg.

Alluvial soil deposits occur along various stretches of the banks of the Red and Assiniboine Rivers. The alluvium is a non-homogeneous combination fine grained soils including clay, silt and sand. The gradation of the soil can vary significantly over short distances (horizontally and vertically). Deposits with lower clay content are often saturated with a loose compactness condition. Deposits with higher clay contents are known to have water bearing layers of sand within the clay.

3.1.3 Hydrogeology

The overburden stratigraphy is underlain by an extensive regional fractured bedrock aquifer consisting of limestones and dolomites of the Stony Mountain and Red River Formations. The upper portion of the bedrock is highly fractured and forms an extensive aquifer referred to as the Carbonate Aquifer which underlies the City of Winnipeg. Published information (Render, 1970 and Department of Geologic Engineering, 1983) indicate that the regional transmissivity of this aquifer typically ranges from 1.4×10^{-3} to 7.1×10^{-3} m²/s (8,100 to 41,000 lgpd/ft). However, it is known that transmissivities can vary substantially over very short distances depending on the degree and interconnectivity of the fracturing.

3.2 Previous Geotechnical Investigations

In 2011 / 2012, a Phase 1 geotechnical investigation was undertaken by Dyregrov Robinson Inc. for the Ferry Road and Riverbend Combined Sewer Relief Works project in the City of Winnipeg. The purpose of the 2011/2012 geotechnical investigation was to provide preliminary geotechnical data relative to the design and installation of storm relief sewers within the Ferry Road and Riverbend areas. The area extends west from St. James Street to the Winnipeg James Armstrong Richardson International Airport and Winchester Street and from the Assiniboine River north to approximately Saskatchewan Avenue. Test holes were drilled to provide subsurface stratigraphy and groundwater conditions at representative locations within the general study area and to obtain soil samples for laboratory testing. Three test holes were drilled along Rutland Street (Test Holes 12-11, 12-12 and 12-13, see Appendix B).

3.3 Site Conditions

The route of the Rutland Trunk Sewer follows Rutland Street from a point about 345 m North of Silver Avenue to the Assiniboine River south of Portage Avenue.

North of Silver Avenue, the proposed route of the trunk sewer crosses an undeveloped area that includes the St. James Rods Football Club property. The property is relatively flat lying, vegetated with grass and has some playing fields, paved parking and a clubhouse structure.

The stretch between Silver Avenue and Portage Avenue is an older residential area that is relatively flat lying and has several existing underground utility lines in the right-of-way along Rutland Street and across Portage Avenue. There are a number of mature trees along the boulevards.

South of Portage Avenue, the proposed route of the trunk sewer crosses the St. James Collegiate property, which owned by the St. James Assiniboia School Division. The school property is relatively flat lying and contains some paved areas and outdoor facilities (e.g. paved running track).

South of the school property is the Bourkevale Community Centre (BCC) property where there is a sharp change in site grade (+/- 1.5 m) from the school's running track down to the BCC outdoor soccer fields. From the soccer fields to the riverbank there is a gradual grade down to the river.

The total height of the riverbank about 6.5 m and the average slope angle is about 5H:1V. The riverbank has three general areas, the lower bank area along the river, a relatively flat mid-bank area and the upper bank area that blends into prairie level behind the riverbank. The lower bank area is about 2.5 m tall and has a slope that is about 3.5H:1V. The flatter mid-bank area is about 1.2 m tall and 11 m long yielding a slope angle of about 9H:1V. The upper bank is about 3 m tall with a slope angle around 4.75H:1V. The bank is well vegetated with grass and there are no obvious signs of deep-seated movements of the riverbank. The lower bank area along the river may have some shallow localized slip surfaces which are likely affected by erosion along the river's edge. There is an existing outfall located about 150 m downstream of the proposed trunk sewer outfall location.

It is not known if any areas along the route of the proposed trunk sewer were previously developed. If some areas were previously developed it is possible that some features of the former buildings, for example, were not removed (e.g. footings, piles, basement walls and floor slabs etc.) and the backfill used may not have been well compacted and may contain some demolition debris (e.g. bricks, wood).

4.0 FIELD INVESTIGATION

Twenty-nine test holes (Test Holes 19-147 to 19-173 and 19-239 and 19-240) were drilled along the trunk sewer route (from the Assiniboine River to Silver Avenue) between July 26th and August 21st, 2019. In December 2020, five additional test holes (Test Holes 20-244 to 20-248) were drilled north of Silver Avenue. The test hole depths were targeted to be about 3 m below the expected invert of the proposed trunk sewer pipe. The test hole locations and pipe invert depths were provided by Tetra Tech. The final test hole locations were adjusted to avoid buried utilities amongst other considerations (e.g. drill rig access). The test holes were not drilled directly on the proposed tunnel alignment to avoid potential construction issues that can arise when tunnel boring machines pass through test holes backfilled with auger cuttings and bentonite. A summary of the test hole locations and survey information is provided on Table A1 (Appendix A) and illustrated on the Test Hole Location drawing in Appendix A.

The test holes were drilled by Paddock Drilling Ltd. using a track mounted Acker SS drill rig or a truck mounted Acker MP8 drill rig equipped with 125 mm solid stem augers, 200 mm hollow stem augers and an HQ coring system with casing advancer tools.

General site supervision and logging of the test holes was performed by DRI. Representative disturbed (auger cuttings, split barrel sampler) and undisturbed (Shelby tube) soil samples were collected. In Test Holes 19-166 to 19-173, auger refusal occurred before the target test hole depth was achieved. These eight test holes, and Test Holes 20-244 to 20-248, were finished by coring below the depth of auger refusal. Test Holes 19-173 and 20-248 were cored into bedrock to determine the depth to bedrock. The HQ core samples (65 mm diameter) of the glacial till and bedrock were recovered and placed in core boxes. Standard Penetration Tests (SPT's) were performed in the glacial till by driving a split barrel sampler 450 mm into the base of the test hole using an automatic slide hammer weighing 63.5 kg and dropped from a height of 760 mm. The number of blows for every 150 mm of penetration was recorded. The SPT N values are the number of hammer blows required to drive the split barrel sampler 300 mm deep after the initial 150 mm of penetration. The test holes were backfilled to grade with auger cuttings and bentonite chips. Excess auger cuttings were bagged and removed from site. Twelve holes were drilled through a core hole in the sidewalk, these core holes were repaired with concrete.

The soil samples and coring samples (glacial till and bedrock) were returned to our Soils Testing Laboratory for testing including additional visual classification and determination of moisture contents on all soil samples. Representative samples of the soils encountered along the route of the trunk sewer were tested to determine the plasticity characteristics (Atterberg Limits), gradation (hydrometer analysis), soil chemistry and swelling characteristics. Bulk densities and undrained shear strengths of the clay soil were measured from the Shelby tube samples. Fourteen samples from the Shelby tubes were preserved with wax and can be used for additional testing, if required. Three of the waxed samples from the Shelby tubes were photographed and the bedrock core samples were logged.

In addition to the above testing, some soil and rock samples were submitted to the Colorado School of Mines in Denver, Colorado, USA for specialized testing relating to abrasion characteristics of the soil that the tunnelling equipment will have to work through. Two composite samples of the clay soil and two composite samples of the glacial till (one of each soil type from test holes south of Silver Avenue and one of each soil type from the test holes north of Silver Avenue) and one sample of alluvial sand were submitted for SINTEF Soil Abrasion Testing (SAT). The alluvial sand was collected from a tunnel shaft that was drilled on Ferry Road in early 2021 and was also tested for petrographic analysis. Three samples of the cobbles and boulders recovered during coring in the glacial till were submitted for Cerchar Abrasivity Index (CAI) testing, thin section petrographic analysis and uniaxial compressive strength (UCS) testing.

The test hole logs are provided in Appendix B and include a description of the soil and bedrock conditions encountered, laboratory testing results and comments on the subsurface conditions observed at the time of drilling. Appendix C includes photographs of the glacial till and bedrock core samples (Figures C1 to C13) and a summary of the bedrock core samples (Table C1). The laboratory testing results are provided in Appendix D and charts of the test results are provided on Figures E1 to E18 in Appendix E. The standard penetration testing results are provided on Table F1 and Figures F1 to F3 in Appendix F. The test results for the soil and rock samples tested for abrasion characteristics, unconfined compressive strength and petrographic analysis are provided in Appendix G.

A geophysical survey was conducted by Tetra Tech Canada Inc. along the trunk alignment in the summer of 2020. The final report prepared by Tetra Tech Canada Inc. is attached in Appendix H and includes seismic profiles that illustrate the interpreted / inferred glacial till interface.

5.0 SUBSURFACE CONDITIONS

The general stratigraphy encountered in the test holes from grade includes topsoil, fill and pavement materials, alluvial soils, silt, silty clay, glacial silt till and bedrock. A general description of the stratigraphic units is provided below and is based on the test hole logs (Test Holes 19-147 to 19-173, 19-239, 19-240 and Test Holes 20-244 to 20-248) in Appendix B. Refer to the test hole logs and laboratory testing results for additional information.

5.1 Pavement, Topsoil and Fill Materials

Topsoil was encountered in several test holes and is about 50 to 100 mm thick.

Test Holes 19-155 to 19-162 and Test Hole 19-239 were drilled through the sidewalk on the west side of Rutland Street. The sidewalk concrete ranged in thickness from 100 to 125 mm and was supported on clay soil or sand and gravel.

No significant fill layers were encountered in the test holes. The fill materials were typically encountered directly below the concrete sidewalk and were less than 300 mm thick.

5.2 Alluvium

Alluvial soil deposits were encountered in Test Holes 19-147 to 19-151, which are closest to the Assiniboine River. No alluvial deposits were encountered in the other test holes. The alluvium is a non-homogeneous combination fine grained soils including clay, silt and sand. The composition of the soils changed with depth in the test holes and between the test holes. The alluvial soil encountered in the test holes was mainly clay with intermittent layers of silt and a few layers of sand.

The clay contains variable amounts of silt (some silt to silty) and is brown in color, dry to moist with a firm to stiff consistency in the upper portion of the test holes. With depth, the clay trended towards being moist to wet and soft to firm. A few thin layers of sand were observed within the clay zones and the sand was saturated. The various clay layers encountered in the test holes range in thickness from 0.6 m to 6.5 m and the moisture contents ranged from about 15 to 41 percent with an average of 29 percent. The moisture content profiles with depth and elevation are provided on Figures E1 and E2 (Appendix E). Undrained shear strengths of the clay from the Shelby tube samples were measured using Torvane, penetrometer, and unconfined compressive strength methods. The strengths ranged from about 20 to 50 kPa with an average value around 30 kPa. The bulk unit weight of the clay is about 17.5 kN/m³. The undrained shear strength profile with depth and elevation are provided on Figures E3 and E4 (Appendix E).

The silt layers contain variable amounts of clay (trace to some) and traces of sand. It is brown to grey in color and moist becoming wet with depth. The silt has low to medium plasticity, depending on the clay content, and it has a loose (soft) condition. The moisture contents ranged from about 12 to 33 percent with an average of 26 percent. The moisture content profiles with depth and elevation are provided on Figures E5 and E6 (Appendix E).

Five samples of the clay alluvium (TH 19-148 - sample T296, TH 19-149 – sample G289, TH 19-150 – sample G277, TH 19-151 samples T269 and G272) were tested to evaluate the plasticity characteristics of the soil. The clay has intermediate plasticity with plastic limits ranging from 15 to 23, liquid limits ranging from 33 to 46 percent and plasticity indices of 13 to 26. The liquidity indices range from 0.3 to 1.1. The results are summarized in Table D1 along with the laboratory test reports (Appendix D).

Five samples of the clay alluvium (TH 19-148 - sample T296, TH 19-149 – sample G289, TH 19-150 – sample G277, TH 19-151 samples T269 and G272) were tested to evaluate the particle size distribution of the soil. The samples contained 46 to 53 percent clay sized particles, 40 to 53 percent silt sized particles and 0.7 to 6.4 percent sand sized particles. The results are summarized in Table D2 along with the laboratory test reports (Appendix D).

Two samples of the alluvium soil (TH 19-149 - sample G286 and TH 19-151 – sample G267) were submitted for testing to determine soil chemistry properties including; sulphate (SO4), chloride, conductivity / resistivity and pH. The results are summarized in Table D3 along with the laboratory test report from Bureau Veritas Laboratories (see Appendix D).

Sand layers were encountered in Test Holes 19-148 and 19-150 at depths of 6.4 m and 8.2 m, respectively. The sand was 300 to 600 mm thick and is brown, wet (saturated), coarse grained and has a loose compactness condition. The moisture contents from two samples were 12.1 percent and 14.6 percent. The moisture contents with depth and elevation are provided on Figures E7 and E8 (Appendix E).

A composite sample of sand alluvium, collected from a tunnel shaft that was drilled south of Portage Avenue on Ferry Road, in early 2021, was submitted for SINTEF-SAT testing and petrographic analysis at the Colorado School of Mines in the USA. The SAT test resulted in an SAT value of 11.1. The Abrasivity Classification in the testing report is noted as being medium for SAT values between 7 and 22. The laboratory test report is provided in Appendix G. The petrographic analysis report indicates the sand grains were fine in size and comprised of quartz, feldspar and rock fragments with a coating of clay minerals. Refer to the petrographic analysis report in Appendix G for detailed information.

5.3 Silt

Silt was encountered in 13 test holes (in the area from Test Holes 19-152 to 19-168). It was typically encountered within 1 m of ground level and was generally around 600 mm thick but ranges in thickness from 600 mm to 2100 mm. It is light brown in color and dry to moist with a loose compactness condition. The moisture contents of the silt ranged from about 11 to 26 percent with an average of 18 percent. The moisture content profiles with depth and elevation are provided on Figures E9 and E10 (Appendix E).

One sample of the silt (TH 19-240 - sample G427) was tested to evaluate the plasticity characteristics of the soil. The silt has low plasticity with a plastic limit of 17 percent, a liquid limit of 22 percent and a plasticity index 5. The liquidity index is 1. The results are summarized in Table D1 along with the laboratory test report (see Appendix D).

5.4 Silty Clay (Glaciolacustrine)

Lake Agassiz glaciolacustrine silty clay was encountered in all test holes north of Test Hole 19-151 (i.e. Test Holes 19-152 to 19-168, 19-239 and 19-240 and 20-244 to 20-248)). In Test Hole 19-148, a 900 mm

thick layer of glaciolacustrine clay was encountered beneath the alluvium at a depth of 7 m, glacial till was present below the clay layer.

An upper layer of clay was encountered in the test holes having a shallow silt layer. The thickness of the upper clay layer is about 1 m thick but ranges from 0.3 m to 1.8 m. The main clay deposit, below the silt layer, typically begins at depths of 1.2 to 1.5 m below grade.

The main clay deposit (i.e. excluding the upper clay layer) ranges in thickness from 4 to 12 m thick. The clay is on the order of 10 to 12 m thick in Test Holes 19-152 to 19-159 (i.e. south of Bruce Avenue). The clay is on the order of 7 to 9 m thick in Test Holes 19-160 to 19-165, including Test Hole 19-239 (i.e. north of Bruce Avenue to Ness Avenue). North of Ness Avenue (i.e. Test Holes 19-166 to 19-173 and including TH19-240) the clay is about 6.5 m thick and is 5 m thick at Test Hole 19-173. North of Silver Avenue (i.e. Test Holes 20-244 to 20-248) the clay is about 5.5 m thick and is 4 m thick at Test Hole 20-248.

The upper clay layer, and the upper 1.5 m of the main clay deposit where no silt layer is present, is black in color and contains traces of organics. Below the black clay, it is mottled brown and grey to a depth of about 6 to 7 m below which it is grey. It is moist with a stiff consistency to a depth of about 6 m and below it has a firm consistency. The clay typically has high plasticity, contains trace silt inclusions, traces of sand and gravel and trace till inclusions. The till inclusions occur towards the bottom of the clay deposit. Of interest is Test Hole 19-157, where a 1.7 m thick layer of glacial till was encountered in the clay at a depth of 9.9 m and clay was present below the till down to 12.2 m. The first test holes south (Test Hole 19-156) and north (Test Hole 19-158) of Test Hole 19-157 both had clay down to 12.2 m and no till was encountered when the target test hole depth was achieved. Till layers within the clay are not common but may be a result of a large pocket of glacial till falling off the glacial ice sheet after glacial Lake Agassiz formed. Boulders are also occasionally encountered in the clay layer and are likely deposited in a similar manner as this till layer found within the clay. The moisture contents of the clay are in the range of 20 to 40 percent in the upper 2 m of the test holes. Below 2 m, the moisture contents range from 40 to 60 percent with an average 48 percent. Some of the clay samples at depth in the test holes have moisture contents in the range of 20 to 40 percent, which is attributed to the till inclusions observed in the clay at depth. The moisture content profiles with depth and elevation are provided on Figures E11 and E12 (Appendix E).

Undrained shear strengths of the clay from the Shelby tube samples were measured using Torvane, penetrometer, and unconfined compressive strength methods. The strengths range from about 25 to 75 kPa with an average value around 50 kPa to a depth of 6 m. Below this depth the strengths range from about 25 to 50 kPa with an average value around 35 to 40 kPa. The undrained shear strength profile with depth and elevation are provided on Figures E13 and E14 (Appendix E). The bulk unit weight of the clay ranges from 16 to 19 kN/m³ with an average of 17 kN/m³. The bulk unit weight profile with depth and elevation are provided on Figures E15 and E16 (Appendix E).

Eight samples of the glaciolacustrine clay (TH19-152 sample G240, TH19-156 sample T326, TH19-157 sample T377, TH19-162 sample T394, TH19-166 sample G439, TH19-173 sample G492, TH20-245 sample G18 and TH20-248 sample T55) were tested to evaluate the plasticity characteristics of the soil. The clay typically has high plasticity with plastic limits ranging from 13 to 32, liquid limits ranging from 43 to 91 percent and plasticity indices of 30 to 59. The liquidity indices range from 0.3 to 0.9. The two samples north of Silver Avenue (i.e. TH's 20-245 and 20-248) have intermediate plasticity. The results are summarized in Table D1 along with the laboratory test reports (Appendix D).

Six samples of the glaciolacustrine clay (TH19-152 sample G240, TH19-156 sample T326, TH19-157 sample T377, TH 19-162 sample T394, TH 19-166 sample G439 and TH 19-173 sample G492) were tested to evaluate the particle size distribution of the soil. The samples contained 52 to 100 percent clay sized particles, 0 to 37 percent silt sized particles and up to 11 percent sand sized particles. The results are summarized in Table D2 along with the laboratory test reports (Appendix D).

Four samples of the clay soil (TH 19-153 sample G248, TH 19-161 sample G383, TH 19-167 sample G456 and TH20-244 sample T5) were submitted for testing to determine soil chemistry properties including; sulphate (SO4), chloride, conductivity / resistivity and pH. The results are summarized in Table D3 and the laboratory test reports from Bureau Veritas Laboratories is provided in Appendix D.

Three samples of the clay soil (TH 19-156 - sample T326, TH 19-162 – sample T394 and TH 19-173 – sample T493) were submitted for testing to evaluate the potential for swelling and the swell pressure. The swell percentages were 1.3, 1.6 and 2.2 percent and the estimated swell pressures were 40, 41 and 68 kPa. The results are summarized in Table D4 and the laboratory test reports from WOOD PLC are provided in Appendix D.

Two composite samples of the clay soil were submitted for SINTEF-SAT testing at the Colorado School of Mines in the USA. One sample was made up of clay samples from the test holes south of Silver Avenue (sample ID 'Clay-1') and the other sample (sample ID 'Clay-2') was made up from bulk samples of the auger cuttings collected during drilling of the test holes north of Silver Avenue (i.e. TH's 20-244 to 20-248). The SAT tests resulted in SAT values of 3.45 and 1.4 for samples Clay-1 and Clay-2, respectively. The Abrasivity Classification in the testing report is noted as being low for SAT values less than 7. The laboratory test reports are provided in Appendix G.

5.5 Glacial Silt Till

Glacial till was not encountered in Test Holes 19-151, 19-152, 19-156, 19-158 and 19-159. In the other test holes, glacial silt till was encountered below the alluvial soils or the silty clay deposit. In Test Holes 19-173 and 20-248, which were drilled into bedrock the glacial till is 8 m and 11.3 m thick, respectively. The till contact depth in the four test holes located closest to the Assiniboine River (Test Holes 19-147 to 19-150) ranged from 5 to 10 m. South of Ness Avenue (Test Holes 19-153 to 19-165, including 19-239) the depth to glacial till is about 9 to 12 m. North of Ness Avenue (Test Holes 19-166 to 19-173, including 19-240) the depth to glacial till decreases in a northerly direction from 9 to 5 m. North of Silver Avenue (Test Holes 20-244 to 20-248), the depth to glacial till was about 5.5 m decreasing to 4 m at Test Hole 20-248. The geophysical survey conducted by Tetra Tech Canada Inc. (see report in Appendix H) was used to interpret / infer the interface between the silty clay and glacial till along the route of the trunk sewer. The results are provided on Figures 2 and 3 of the attached geophysical survey report and show that the interface between the silty clay and the glacial till is not flat and generally rises in a northward direction.

The glacial till deposit in the Winnipeg area is typically a heterogeneous mixture of sand, gravel, cobble and boulder size materials within a predominantly silt matrix that has a low but variable clay content. The silt till encountered in the test holes typically contains traces of sand and gravel. No cobbles and boulders were confirmed in the test holes during augering due to the small diameter of augers used for drilling. During coring at Test Holes 19-166 to 19-173 and 20-244 to 20-248, a few cobbles and boulders were recovered from the core barrel (see Figures C1 to C13 in Appendix C). The till is grey or brown in color, moist to wet and loose to compact in the upper 1 to 2 m (variable) and becomes dry to moist and

dense to very dense with depth. The moisture content of the till ranges from 3 to 29 percent with an average of 11 percent. The moisture content profiles with depth and elevation are provided on Figures E17 and E18 (Appendix E).

In Test Holes 19-161 and 19-162, a gas pocket was encountered near the bottom of the test holes. There was no odour, the 'gas' flowed out of the test holes under pressure for at least 10 to 15 minutes.

Sixty-five standard penetration tests (SPT) were attempted and fifty-eight were successfully completed. The SPT's ranged from 2 to 154 with an average of 57. The test results are summarized on Table F1 in Appendix F. The SPT profiles with depth and elevation are provided on Figures F1 and F2 (Appendix F). Figure F3 shows the SPT-N values versus moisture content.

Auger refusal was encountered in 19 test holes. In Test Holes 19-147 to 19-149, which are located at the south end of the trunk sewer near the Assiniboine River, auger refusal was encountered in the glacial till at depths of 6.7 m, 9.6 m and 10 m, respectively. These depths correspond to an elevation of 221.5 m (+/- 0.5). In Test Holes 19-160 to 19-165 and 19-239 (approx. from Bruce Avenue to Ness Avenue), the auger refusal depths ranged from 10 to 12.3 m which correspond to elevations of 222.3 m to 224.1 m. The typical elevation at auger refusal was around 223 m. In Test Holes 19-166 to 19-173 and 19-240 (approx. from Ness Avenue to Silver Avenue), the auger refusal depths ranged from 7.5 to 9 m with a trend of shallower refusal occurring from south to north. These refusal depths correspond to elevations of 226 m to 228.5 m with a typical elevation around 227 m. Test Holes 20-244 to 20-248 were not drilled to auger refusal before the drilling method was switched over to the casing advancer and HQ coring.

Nine samples of the glacial till (TH19-148 sample G302, TH19-161 sample G386, TH19-166 sample S443, TH19-173 sample S496, TH20-244 sample G7, TH20-245 sample G20, TH20-246 sample S36, TH20-247 sample S46 and TH20-248 sample S56) were tested to evaluate the particle size distribution of the soil. The samples contained 32 to 49 percent clay sized particles, 47 to 60 percent silt sized particles and 4 to 8 percent sand sized particles. The results are summarized in Table D2 along with the laboratory test report (Appendix D).

Two samples of the glacial till (TH19-172 sample G486 and TH20-248 sample S57) were submitted for testing to determine soil chemistry properties including; sulphate (SO4), chloride, conductivity / resistivity and pH. The results are summarized in Table D3 and the laboratory test report from Bureau Veritas Laboratories is provided in Appendix D.

Two composite samples of the glacial till soil were submitted for SINTEF-SAT testing at the Colorado School of Mines in the USA. One sample was made up of till samples from the test holes south of Silver Avenue (sample ID 'Till-1') and the other sample (sample ID 'Till-2') was a bulk sample made from the auger cuttings collected during drilling of the test holes (i.e. TH's 20-244 to 20-248) north of Silver Avenue. The SAT tests resulted in SAT values of 6.25 and 8.2 for samples Till-1 and Till-2, respectively. The Abrasivity Classification in the testing report is noted as being low for SAT values less than 7 and medium for SAT values of 7 to 22. The laboratory test reports are provided in Appendix G.

Three samples of the cobbles and boulders recovered during coring in the glacial till were submitted for Cerchar Abrasivity Index (CAI) testing, thin section petrographic analysis and uniaxial compressive strength (UCS) testing. The samples were taken from Test Hole 19-168 (core sample C550), Test Hole 19-173 (Core sample C518) and Test Hole 20-244 (core sample C8). The samples submitted for testing

are identified on Figures C3, C8 and C9 in Appendix C. The Cerchar CAI, petrographic and UCS results are summarized in Table 5.1:

Test Hole	Sample ID	Depth (m / ft)	Rock Type	Cerchar Abrasivity Index (CAI)	Uniaxial Compressive Strength (UCS) (MPa)
TH 19-168	C550	8.2 / 27	Alkali-Feldspar Granite	3.24	n/a sample too short
TH 19-173	C518	7.9 / 26	Limestone (Crystalline Carbonate/Sparstone)	3.29	99.5
TH 20-244	C8	7.3 / 24	Tonalite	3.36	205.7

Table 5.1 – Rock Type, CAI and UCS Results

5.6 Bedrock

Test Holes 19-173 and 20-248 were drilled into bedrock using HQ size coring tools. Bedrock was encountered beneath the glacial silt till at a depths of 13.2 m (elevation 221.9 m) and 15.3 m (elevation 220.8 m) in Test Holes 19-173 and 20-248, respectively. The bedrock geology maps in this area of Winnipeg (Manitoba Geological Survey's Geologic Scientific Report GR2002-1) classify the bedrock as a dolomite mudstone belonging to the Upper Fort Garry Member of the Red River Formation. The geology map suggests that Test Hole 19-173 is on the boundary between the Upper Fort Garry Member of the Red River Formation to the east and Gunn Member of the Stony Mountain Formation to the west and south.

The colour of the bedrock is generally whitish grey color and has horizontal and vertical joints with some evidence of water flow. The length of bedrock core recovered from each core run was typically greater than about 90 percent of the cored length and the Rock Quality Designation (RQD) for the bedrock ranged from about 30 to 90 percent, indicating poor to good quality. The bedrock recovered from the test holes is strong and has close to moderately close discontinuity spacing and gapped to open joint apertures. Appendix C includes photographs of the bedrock core samples recovered (see Figure C8 and C13) and a tabular summary (Table C1) of the core samples.

5.7 Test Hole Stability and Groundwater Conditions

In Winnipeg, groundwater usually occurs in shallow perched water tables within fill layers and silt deposits that are quite permeable and underlain by the relatively impermeable Lake Agassiz clays. A groundwater table is not apparent during drilling within the clay soil due to its low permeability.

Sloughing and seepage conditions were observed in Test Holes 19-147 to 19-151 which were drilled into the alluvial soils. No significant seepage and sloughing were observed from the remaining test holes, which were not drilled into alluvial soils. Some minor seepage and sloughing were encountered from the shallow silt layer in Test Hole 19-239 and from the glacial till in Test Holes 19-160, 19-161, 19-164, 19-168 and 19-240. Refer to the notes on each test hole log for additional information.

Standpipe piezometers were installed in Test Holes 19-147, 19-148, 19-155, 19-173, 19-239, 19-240 and 20-248. The piezometer installation details and measured ground water levels are provided on the test hole logs and summarized in Table 5.2 below. The initial water levels were taken on September 23, 2019 (January 7, 2021 for TH20-248) and the second set of water levels were taken on November 13, 2019. After a dry summer, the months of September and October 2019 had a lot of precipitation, and the river levels were high. The water levels from November 13, 2019 are relatively high compared to September 23, 2019 and are attributed to the wet weather in the fall of 2019. The water levels on June 11, 2021 were taken following a dry fall (2020) and winter (2020/2021) but also after some recent rain events.

In May 2020, hydraulic conductivity testing was performed by Tetra Tech Canada Inc. using the standpipe piezometers installed in Test Holes 19-147, 19-148, 19-155, 19-173, 19-239 and 19-240. The testing procedures and results are presented in Tetra Tech's final report (Appendix H). The results indicate that the hydraulic conductivities are consistent with the soil types (alluvial clay, silt till) and the dolomite bedrock encountered in the test holes (refer to Table 1 of the report in Appendix H).

In general, the water level in the limestone bedrock aquifer below the glacial till has been rising since the early 1970's. In some areas of the City of Winnipeg (e.g. downtown area) the bedrock water levels have risen by about 3 m since that time to around elevation 225 to 226 m with local spikes approaching 227 m. The local spikes are assumed to be associated with spring freshet and flooding events. The rise in the bedrock aquifer levels has been attributed, by others, to the reduced demand for groundwater by industrial users in the greater Winnipeg area.

Groundwater conditions should be expected to vary seasonally, from year to year and possibly as a result of construction activities.

Test Hole	19-147	19-148	19-155	19-173	19-239	19-240	19-248
Ground Elev. (m)	228.62	230.57	233.63	235.16	234.08	235.11	236.03
Tip Elevation (m)	221.90	221.00	221.30	219.60	223.00	225.70	225.3
Monitoring Zone	Alluvium / Till	Alluvium / Till	Till	Bedrock	Till	Till	Till
<u>Date</u>			Piezo	metric Elevatio	<u>on</u> (m)		
23 Sept 2019	225.60	226.39	226.29	226.68	226.37	226.61	n/a
13 Nov 2019	226.83	227.00	228.46	228.67	228.53	227.26	n/a
25 May 2020	226.28	226.99	226.97	227.46	227.09	228.61	n/a
7 January 2021	n/a	n/a	n/a	n/a	n/a	n/a	228.63
11 June 2021	225.33	226.80	226.00	226.53	226.08	227.76	228.64

 Table 5.2 – Standpipe Piezometer Monitoring Results

6.0 <u>REFERENCES</u>

- 1. Department of Geological Engineering, University of Manitoba (1983). Geological Engineering Report for Urban Development of Winnipeg.
- 2. Dyregrov Robinson Inc., Phase 1 Geotechnical Investigation Ferry Road and Riverbend Combined Sewer Relief Works, August 2012.
- 3. Render, F.W., 1970, Geohydrology of the Metropolitan Winnipeg Area as Relates to Groundwater Supply and Construction, Canadian Geotechnical Journal, 7, pp 243-274.
- 4. Teller, J.T., 1976, Lake Agassiz Deposits in the Main Offshore Basin of Southern Manitoba, Canadian Journal of Earth Sciences, 134, pp. 27-43.
- 5. Manitoba Geological Survey's Geologic Scientific Report GR2002-1, Bedrock mineral resources of Manitoba's capital region.

7.0 <u>CLOSURE</u>

This report and its findings were prepared based on the subsurface conditions encountered in the random representative sample of test holes drilled in July and August of 2019 and December 2020 for the sole purpose of this geotechnical investigation and our understanding of the proposed Rutland Trunk Sewer at the time of this report. Subsurface conditions are inherently variable and should be expected to vary along the route of the trunk sewer.

This report was prepared for the sole and exclusive use of Tetra Tech Canada Inc. and The City of Winnipeg for the Rutland Trunk Sewer which will be installed as part of the Ferry Road and Riverbend Combined Sewer Relief Project in Winnipeg, Manitoba. The information and recommendations contained in this report are for the benefit of Tetra Tech Canada Inc. and The City of Winnipeg only and no other party or entity shall have any claim against Dyregrov Robinson Inc., or the author, nor may this report be used for any other projects, including but not limited to changes in the proposed Rutland Trunk Sewer Project without the consent of Dyregrov Robinson Inc. The findings and recommendations in this report have been prepared in accordance with generally accepted geotechnical engineering principles and practises. No other warranty, expressed or implied, is provided.

APPENDIX A

Test Hole Location Plan and Test Hole Location and Survey (Table A1)

Ferry Road & Riverbend CSR - Rutland Trunk Sewer

Test Hole ID	General Location	*UTM Co	ordinates	*Geodetic
		Northing	Easting	Elevation
		(m)	(m)	(m)
TH 19-147	Bourkevale Park	5,526,115.1	627,781.6	228.62
TH 19-148	Bourkevale Park	5,526,210.9	627,763.6	230.57
TH 19-149	Bourkevale Park	5,526,249.2	627,776.8	231.01
TH 19-150	Bourkevale Park	5,526,292.0	627,764.9	231.91
TH 19-151	Bourkevale Park	5,526,345.5	627,768.0	231.04
TH 19-152	Bourkevale Park	5,526,394.1	627,753.1	232.70
TH 19-153	Bourkevale Park	5,526,441.0	627,755.0	232.56
TH 19-154	Bourkevale Park	5,526,486.3	627,756.8	232.64
TH 19-155	Between Portage Ave. & Bruce Ave.	5,526,690.9	627,784.7	233.63
TH 19-156	Between Portage Ave. & Bruce Ave.	5,526,736.3	627,786.6	233.70
TH 19-157	Between Portage Ave. & Bruce Ave.	5,526,797.0	627,788.9	233.79
TH 19-158	Between Portage Ave. & Bruce Ave.	5,526,827.9	627,789.6	233.73
TH 19-159	Between Portage Ave. & Bruce Ave.	5,526,887.8	627,792.2	233.82
TH 19-160	Between Portage Ave. & Bruce Ave.	5,526,925.7	627,793.2	233.93
TH 19-161	Between Bruce Ave. & Ness Ave.	5,527,026.7	627,797.8	234.20
TH 19-162	Between Bruce Ave. & Ness Ave.	5,527,093.7	627,800.6	234.34
TH 19-163	Between Bruce Ave. & Ness Ave.	5,527,146.8	627,802.2	234.62
TH 19-164	Between Bruce Ave. & Ness Ave.	5,527,192.3	627,803.7	234.64
TH 19-165	Between Bruce Ave. & Ness Ave.	5,527,231.9	627,805.5	234.67
TH 19-166	Between Ness Ave. & Silver Ave.	5,527,340.6	627,810.9	234.94
TH 19-167	Between Ness Ave. & Silver Ave.	5,527,393.5	627,814.3	234.59
TH 19-168	Between Ness Ave. & Silver Ave.	5,527,447.0	627,814.0	234.97
TH 19-169	Between Ness Ave. & Silver Ave.	5,527,516.5	627,816.8	234.92
TH 19-170	Between Ness Ave. & Silver Ave.	5,527,560.4	627,818.5	235.01
TH 19-171	Between Ness Ave. & Silver Ave.	5,527,597.2	627,819.6	234.99
TH 19-172	Between Ness Ave. & Silver Ave.	5,527,625.8	627,821.1	235.07
TH 19-173	Between Ness Ave. & Silver Ave.	5,527,675.4	627,822.5	235.16
TH 19-239	Between Bruce Ave. & Ness Ave.	5,526,983.2	627,796.2	234.09
TH 19-240	Between Ness Ave. & Silver Ave.	5,527,295.8	627,808.6	235.11
TH 20-244	North of Silver Ave.	5,527,747.6	627,803.8	235.22
TH 20-245	North of Silver Ave.	5,527,833.4	627,830.3	235.31
TH 20-246	North of Silver Ave.	5,527,903.4	627,832.4	235.43
TH 20-247	North of Silver Ave.	5,527,984.0	627,840.4	235.64
TH 20-247	North of Silver Ave.	5,528,050.3	627,842.2	236.03

Table A1) Test Hole Location and Survey

* Test hole survey by Tetra Tech

APPENDIX B

2019 / 2020 Test Hole Logs & 2012 Test Hole Logs

EXPLANATION OF TERMS & SYMBOLS

			_			TH Loa	USCS		Laborator	y Classification Crite	eria		
			Descripti	on		Symbols	Classification	Fines (%)	Grading	Plasticity	Notes		
			CLEAN GRAVELS	Well graded sandy gravel or no f	d gravels, s, with little ines	2720	GW	0-5	C _U > 4 1 < C _C < 3				
	GRAVE (More th 50% o	ELS than of	(Little or no fines)	Poorly grade sandy gravel or no f	ed gravels, s, with little ines		GP	0-5	Not satisfying GW requirements		Dual symbols if 5-		
OILS	fraction grave size)	n of el	DIRTY GRAVELS	Silty gravels, grave	silty sandy els		GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and		
AINED SC			(With some fines)	Clayey grave sandy g	els, clayey ravels		GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>		
ARSE GR			CLEAN SANDS	Well grade gravelly sand or no f	d sands, s, with little ines	0::0 0:0:1 0:0:0	SW	0-5	C _U > 6 1 < C _C < 3		$C_{U} = rac{D_{60}}{D_{10}}$		
CO4	SAND (More ti 50% d	DS than of	(Little or no fines)	Poorly grade gravelly sand or no f	ed sands, s, with little ines		SP	0-5	Not satisfying SW requirements		$C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$		
	coarse fraction of sand size)		DIRTY SANDS	Silty sa sand-silt r	ands, nixtures		SM	> 12		Atterberg limits below "A" line or W _P <4			
			(With some fines)	Clayey sands, sand-clay mixtures			SC	> 12		Atterberg limits above "A" line or W _P <7			
	SILTS (Below line	'S ⁄ ʻA'	W _L <50	Inorganic silts, silty or clayey fine sands, with slight plasticity			ML						
	negligil organ conter	ible nic nt)	W _L >50	Inorganic silts of high plasticity			МН						
SOILS	CLAY	(S	W _L <30	Inorganic clays, silty clays, sandy clays o low plasticity, lean cla			CL						
RAINED	(Above line negligil organ	e 'A' ible nic	30 <w<sub>L<50</w<sub>	Inorganic clays and silty clays of medium plasticity			СІ			Classification is Based upon Plasticity Chart			
FINE G	conter	nt)	W _L >50	Inorganic cla plasticity, t	ays of high fat clays		СН						
	ORGANIC SILTS & CLAYS		W _L <50	Organic s organic silty o plasti	ilts and clays of low city		OL						
	(Below line)	/ 'A')	W _L >50	Organic cla plasti	ys of high city		он						
н	HIGHLY ORGA		NIC SOILS	Peat and ot organic	her highly soils		Pt	V Classi	on Post fication Limit	Strong colour o fibrou	r odour, and often s texture		
			Asphalt		GI	acial Till		B (lg	edrock Ineous)				
			Concrete		Cl	ay Shale		B (Lin	edrock nestone)	DYREGROV R CONSULTING GEOT	COBINSON INC. ECHNICAL ENGINEERS		
×			Fill					Bedrock (Undifferentiated)					

TERMS and SYMBOLS

Laboratory and field tests are identified as follows:

Unconfined Comp.: undrained shear strength (kPa or psf) derived from unconfined compression testing.

Torvane: undrained shear strength (kPa or psf) measured using a Torvane

Pocket Pen.: undrained shear strength (kPa or psf) measured using a pocket penetrometer.

Unit Weight bulk unit weight of soil or rock (kN/m³ or pcf).

SPT – N Standard Penetration Test: The number of blows (N) required to drive a 51 mm O.D. split barrel sampler 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.

- **DCPT** Dynamic Cone Penetration Test. The number of blows (N) required to drive a 50 mm diameter cone 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.
- M/C insitu soil moisture content in percent
- PL Plastic limit, moisture content in percent
- LL Liquid limit, moisture content in percent

The undrained shear strength (Su) of cohesive soil is related to its consistency as follows:

Su (kPa)	Su (psf)	CONSISTENCY
<12	250	very soft
12 – 25	250 – 525	soft
25 – 50	525 – 1050	firm
50 – 100	1050 – 2100	stiff
100 – 200	2100 – 4200	very stiff
200	4200	hard

The SPT - N of non-cohesive soil is related to compactness condition as follows:

N – Blows / 300 mm	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50 +	very dense

References:

ASTM D2487 - Classification of Soils For Engineering Purposes (Unified Soil Classification System)

Canadian Foundation Engineering Manual, 4th Edition, Canadian Geotechnical Society, 2006

PROJECT	: Ferry	Rd. & I	Riverbend CSR - R	utland Trunk Sewer	CLIENT:	Tetra Tech Canada Inc.		TEST	T HOI	E NO:	19-147		
LOCATION	V: UTN	<u>/ 14U: 5</u>	5526115 m N, 6277	82 m E				PRO		NO.: 14	43691	<u></u>	
SAMPLET	VPF	Paddod			X SS Driii W/125 i MSPLIT SPOC	N BULK	jers \[\] NO	ELE \	/ATIC /FRY	: :(m) או ת∎ו	228.01	9	
BACKFILL	TYPE		BENTONITE	GRAVEL		GROUT		TTINGS			SAND		
ELEVATION (m) DEPTH (m)	SLOTTED PIEZOMETER	SOIL SYMBOL		SOIL	DESCRIPT	ON		SAMPLE TYPE	SAMPLE #	◆ SPT 10 20 3 ■ Unit 12 14 1 PL 10 20 3	N blows/3 0 40 5 Weight k 6 18 2 M/C (%) 0 40 5	00mm ◀ 50 60 N/m³ ■ 20 22 LL 50 60	▶ 70 24 70
CH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DATA TEMPLATE - AUGUST 2, 2013.GDT 9/8/20			CLAY (Alluvium - brown - dry to moist - intermediate p SILT (Alluvium) - brown - moist, loose - low plasticity - grey and wet l SILT (TILL) - tra - grey, wet, loos - compact and - dense below (END OF TEST NOTES: 1. Some slough 2. After drilling Switched to h 3. 25 mm PVC Top of pipe (Water levels: Sept 23, 2019: Nov 13, 2019: May 25, 2020:	n) - some silt to silty plasticity) - some clay, some below 4 m ace to some clay, tr se moist below 5.5 m 5 m HOLE AT 6.7 m IN hing and seepage o to 5.8 m, hole caver iollow stem (HS) au Standpipe piezome T.O.P) 0.91 m abov 3.93 m below T.O.F 2.70 m below T.O.F 3.25 m below T.O.F	sand sand sand sand sand sand sand sand	e gravel JGER REFUSAL) 1. ande tip installed 6.7 ter elevation - 225.60 ater elevation - 226.83 ter elevation - 226.28	m b/l grad		304 305 				
	EGI			ON INC.	-	REVIEWED BY: GR		COM	PLETI	ON DEPT	: 30/7/	19	
	nun ig	500				PROJECT ENGINEER: Gil	Robinson				P	age 1	of 1

F	ROJ	ECT:	Ferry	Rd. &	Riverbend CSR - F	Rutland Trunk Sewer	CLIENT: 1	Tetra Te	ch Ca	anac	la Inc.	TEST H	OLE NO: 1	9-148	
		TION:		<u>/ 14U: (</u>	5526211 m N, 627	764 m E						PROJECT NO.: 143691			
				Paddoo	ck Drilling Ltd.		R SS Drill w/125 n	nm SS 8	200	mm	HS Augers	ELEVAI	ION (m): 2	30.568	
					GRAB			N				RECOVER			
Ľ	ACK	FILL I	YPE		BENTONITE	GRAVEL	IIIISLOUGH		G			THNGS	<u>[:]</u> Si	AND	
	(m) N	(ш	TER	ABOL					ГҮРЕ	Е# Ш	+ Torvane (Su) kl	Pa + <u>60 70</u>	♦ SPT N 10 20 30	blows/300r) 40 50	mm ♦ 60 70
	EVATIO	DEPTH	SLOTTE IEZOME	JIL SYN		SOIL DESCRIP	TION		AMPLE .	SAMPL			■ Unit 1 12 14 16	Weight kN/n 6 <u>1,8 20</u>	n³∎ 22 24
Ē			_	ŏ ZZZ		mm thick) - black d	irv		S		△ Pocket Pen. (Su) <u>10 20 30 40 50</u> : : : : :	kPa ∆ <u>6070</u> : :	PL 10 20 30	M/C (%) 0 40 50 : :	LL
	230	-1			CLAY (Alluviur - trace sand	n) - some silt to ANE) SILT (variable	e silt)		G293			•		
Ē	220				- dry to moist	ce organics to 1.5 m	I			G294			•		
Ē	229	-2			 brown below moist, stiff be 	1.5 m coming firm below 3	m					· · · · · · · · · · · · · · · · · · ·			•••••••••••••••••••••••••••••••••••••••
Ē					- intermediate	plasticity				G295				····	
Ē	228												····.		
E		-3			T296: PL 23, L	L 40, Liquidity Index	x 0.6		Η	TOOO	····		···· ·		
Ē	227				52.7% silt, 46.	1% clay, 1.2% sand			Ш	1296		· · · · · · · · · · · · · · · · · · ·		T	
Ē		-4								-207					••••••
E	226	-								5291		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
Ē		-5													•••••••••••••••••••••••••••••••••••••••
Ē	005				- wet sand lens	se at 5.2 m									
Ē	225				- grey, wet, sof	t below 5.2 m				3298					
Ē		-6													•••••••
0	224	_	\square	0000	SAND (Alluviu	m)	J			3299					
9/8/2		-7			CLAY (Glaciola	acustrine) - siltv	1								
E	223	-			- grey					5300		· · · · · · · · · · · · · · · · · · ·			
013.		-8			moist, firm, hi	igh plasticity	trace cand tra			G301					
T 2,2	222	-		0000	gravel	ome clay to clayey, t	liace sailu, liac	CE		3302		· · · · · · · · · · · · · · · · · · ·	•		•••••••••••••••••••••••••••••••••••••••
IGUS	~~~	0		0000	- grey, wet, loo	se becoming moist a	and dense to v	ery							
		-9		0000	G302: 60.2% s	ilt, 33.7% clay, 5.8%	5 sand			5303	••••				•
MPLATE	2 <u>21</u> [†]			14(11-16)141	END OF TEST	HOLE AT 9.6 m IN	SILT(TILL) (AU	JGER F	REFU	USA	AL)				
CH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DATA TE	NOTES: 1. Some sloughing and seepage observed. 2. After drilling to 8.8 m, hole caved to 5 m. Switched to hollow stem (HS) augers at 8.8 m. 4. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 6.4 m b/l grade. Top of pipe (T.O.P) 0.05 m below grade. Water levels: Sept 23, 2019: 4.13 m below T.O.P Ground water elevation - 226.39 m Nov 13, 2019: 3.52 m below T.O.P Ground water elevation - 226.39 m Nov 13, 2019: 3.53 m below T.O.P Ground water elevation - 226.99 m May 25, 2020: 3.53 m below T.O.P Ground water elevation - 226.99 m														
OTEC	D	YR	EG	ROV	ROBINS				BY:					H: 9.60 m	1
Ŭ Ч С Щ	Co	nsuli	tina	Geot	echnical Engli	neers	ł			C GF	K ED: Cil Dobinson		TION DATE:	29/7/19	0.1 of 1
窗し								FRUJEU		JINE	ER. GILKODINSON			Page	UII

LOCATION: UTM 44U: 558249 m N, 82777 m E PROJECT NO: 14891 CONTRACTOR: Prodock Deling Link METHOD: ACKER SS Drill w/25 mm SS & 200mm H5 Auges ELEVATION (III: 231.011 SAMPLE TYPE GRAD ATTINE GRAD ATTINE GRAD ATTINE GRAD ATTINE BACKFILL TYPE GRAD ATTINE GRAD ATTINE GRAD ATTINE GRAD ATTINE GRAD ATTINE BACKFILL TYPE GRAD ATTINE GRAD ATTINE GRAD ATTINE GRAD ATTINE GRAD ATTINE GRAD ATTINE GOT GOT GOT GOT GRAD ATTINE GRAD ATTINE GRAD ATTINE GRAD ATTINE GRAD ATTINE GOT GOT GOT GOT GRAD ATTINE	PRO	JECT	: Ferry F	Rd. & Riverbend CSR - Ru	tland Trunk Sewer	CLIENT:	Tetra Tech	Canad	da Inc.	TEST H	OLE NO: 19-149
CONTRACTOR: Paddox Drilling Ld. METHOD: ACCRESS Drill w125 mm SS & 200mm H5 Augers ELEVANION (m): 231 011 BACKFILL TYPE BENTONTE GRAVEL ISOLD ESCRIPTION Image: Sold Sold Sold Sold Sold Sold Sold Sold	LOC		N: UTM	14U: 5526249 m N, 62777	7 m E					PROJE	CT NO.: 143691
DAMPE I FFE Divesting in the case of the second in the second interval int	COL		TOR: F	Paddock Drilling Ltd.		SS Drill w/125	mm SS & 2	00mm	HS Augers		FION (m): 231.011
Didd Limit Limit <thlimit< th=""> <thlimit< th=""> <thlim< th=""><th>SAN</th><th></th><th></th><th>GRAB</th><th></th><th></th><th></th><th>JCBULK</th><th></th><th></th><th></th></thlim<></thlimit<></thlimit<>	SAN			GRAB				JCBULK			
U G G G G G A Postel Pen (Bu) Kina A D </th <th>VATION (m)</th> <th>EPTH (m)</th> <th>L SYMBOL</th> <th>SO</th> <th></th> <th>ON</th> <th></th> <th>AMPLE #</th> <th>+ Torvane (Su) 10 20 30 40 50 Lunconfined Comp. 10 20 30 40 50</th> <th>:Pa + <u>60 70</u> (Su) kPa ▲ <u>60 70</u></th> <th></th>	VATION (m)	EPTH (m)	L SYMBOL	SO		ON		AMPLE #	+ Torvane (Su) 10 20 30 40 50 Lunconfined Comp. 10 20 30 40 50	:Pa + <u>60 70</u> (Su) kPa ▲ <u>60 70</u>	
220 1 UPSOL (100 mm thck) - black, moist CLAY (Allurium) - slity, targe organics - - -221 - - - -222 - - - - -223 - - - - -224 - - - - -224 - - - - -225 - - - - - -225 - - - - - - - - - - - - - - - <			SOI					SAI	△ Pocket Pen. (Su) kPa ∆ 60 70	PL M/C (%) LL 10 20 30 40 50 60 70
DYREGROV ROBINSON INC. LOGGED BY: CR COMPLETION DEPTH: 10.00 r REVIEWED BY: GR COMPLETION DATE: 29/7/19	BUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DATA TEMPLATE - AUGUST 2, 2013.GDT 9/8/20 57 57 57 57 57 57 57 57 57 57 57 57 57			TOPSOIL (100 mm the CLAY (Alluvium) - sint - black with trace orgation of the second structure of the	hick) - black, moist ty, trace organics anics to 1.5 m ity wet, soft to firm e to some clay t to wet, loose me silt to AND SIL ⁻ firm ity clay below 6 m isand Liquidity Index 0.9 y, 5.6% sand ome clay, trace sar act r auger refusal, no E AT 10 m IN SILT of a fter drilling to 6 m n after drilling to 9 m em augers at 9 m of drilling, test hole of d with auger cutting	Γ (variable) nd, trace grav penetration, s (TILL) (AUGE n n open to 4.3 n s and bentor	/el split ER REFUS	G284 G284 G284 G285 G287 G287 G287 G287 G287 G287 G287 G287	10 20 30 40 50		
The solution of the solution o		DYR	EGR	OV ROBINSC	ON INC. eers		LOGGED B REVIEWED PROJECT E	Y: CR BY: G	R ER: Gil Robinson	COMPLE	TION DEPTH: 10.00 m TION DATE: 29/7/19 Page 1 of 1

PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Rutl	and Trunk Sewer	CLIENT:	: Tetra T	ech Canada Inc.		TEST H	OLE NO: 19-150			
LOC	ATION	UTM	14U: 5526292 m N, 627765	5 m E					PROJE	CT NO.: 143691			
CON		FOR: P	Paddock Drilling Ltd.		SS Drill w/125	5 mm SS	Augers		ELEVAT	FION (m): 231.907			
SAM			GRAB			JON			RECOVER				
BACI			BENTONITE	GRAVEL			GRUUI	[/][[[∴]SAND			
(m) (m)	EPTH (m)	L SYMBOL		SOIL DE	SCRIPTIC	NC			APLE TYPE AMPLE #	 ◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m³ 12 14 16 18 20 22 24 			
E LE	ā	SOI							SAI	PL M/C (%) LL 			
Ē	Image: Single state sta												
-231	-1		black to brown, dry to	moist, loose	ле				G274	•			
Ē	Ē		CLAY (Alluvium) - silty	1									
-230	2		- moist, stiff										
Ē	E		- intermediate plasticit	У									
-229	-3								G276	3			
Ē	Ē		CLAY (Alluvium) - som	ne silt to AND SILT						···· ··· ··· ··· ··· ··· ··· ··· ··· ·			
E-228	Ē,		- brown / grey, wet, so	ft to firm									
Ē	E ⁴		- intermediate plasticit	У									
E	Ē		G277: PL 15, LL 37, L	iquidity Index 0.3					G277	,			
F-227	5		53.3% clay, 40.3	3% silť, 6.4% sand									
Ē	Ē												
-226	6									B			
Ē	Ē		SILT (Alluvium) - trace	sand									
SE-225	E ₇		- loose, wet										
10 11 11	Ē		- low plasticity						G279	•			
ଅ⊑ ଅ⊑_224	Ē,		CLAY (Alluvium) - silty	1									
2,20	Ē		- grey, moist, firm, inte	rmediate plasticity	area				G280				
THE 302	Ē		SILT (Alluvium) - trace	sand					G28*				
	<u>-</u> 9		- brown										
ATE	Ē		- low plasticity										
	E-10								G282				
₽ ₽	Ē	00	SILT (TILL) - trace to s	some clay, trace sa	nd, trace gr	ravel, gr	ey, wet, loose		G283	3 •			
IK_GINT.GPJ DA			END OF TEST HOLE Notes: 1. Sloughing and seep 2. Upon completion of	AT 10.7 m IN SILT page observed belo drilling test hole or	(TILL) w 6 m.	water le	evel 5.2 m b/l grad	e					
			3. Test hole backfilled	with auger cuttings	and bento	nite chi	DS.	.					
3691.7													
13 14													
T 201													
JGUS													
TS-AL													
PLO													
HECH	LOGGED BY: CR COMPLETION DEPTH: 10.67 m												
	YR	EGR	OV ROBINSO	N INC.		REVIEV	VED BY: GR		COMPLE	ETION DATE: 29/7/19			
ž Co	onsul	ting C	eotechnical Engine	ers		PROJE	CT ENGINEER: Gil Ro	binson		Page 1 of 1			

	PROJ	ECT:	Ferry F	Rd. & Riverbend CSR - Rut	Tetra Teo	Tetra Tech Canada Inc. TE								TEST HOLE NO: 19-151						
										PR	PROJECT NO.: 143691									
	SAME		IUK: P				mm SS A ON ₽	uger RI	ïS II К						<u>10N (</u> Y	m): 2	31.04 DRF			
	BACK	FILL		BENTONITE					ROUT	Γ			GVER							
	ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SO)N	L	SAMPLE TYPE	SAMPLE #	<u>10</u> ▲ Un <u>10</u>	+ Torva 20 30 confined 20 30 Pocket	ne (Su) <u>40 5</u> d Comp. <u>40 5</u> Pen. (Su	kPa + <u>0 60</u> (Su) kP <u>0 60</u> J) kPa ∆	<u>70</u> a ▲ <u>70</u>	◆ SPT N blows/300m 10 20 30 40 50 ■ Unit Weight kN/m 12 14 16 18 20 PL M/C (%)		00mm 0 60 N/m ³ 0 22 LL	◆ 70		
	-			TOPSOIL (50 mm thic	k) - black, moist		/			<u>10</u> :	<u>20 30</u> : :	40 5	<u>0 60</u>	70 :	<u>10</u>	<u>20 30</u>	40 5	<u>0 60</u>	70	
	-230	-1		CLAY (Alluvium) - silty - brown - moist, stiff, intermedi	iate plasticity		/		3265 3266											
	-229 -228	2		SILT (Alluvium) - som - brown - moist to wet, loose - low plasticity	e clay, trace sand				3267 3268		••••••					•				
	-227	-4		CLAY (Alluvium) - silty - brown - moist, firm	/			-												
	-226	-5		- intermediate plasticit - 100 mm of sand at to T269: PL 20, LL 46, L 50.0% clay, 49.3	y op of tube sample (iquidity Index 0.5 3% silt, 0.7% sand	(T269)			T269 G270				+			•				
9/8/20	-225 -224	-6 -7		- arev. soft below 7 m					0074	· · · · · · · · · · · · · · · · · · ·										
JST 2, 2013.GDT	-223	-8		<u> </u>					52/1											
APLATE - AUG	-222	9 10		G272: PL 20, LL 33, L 50.0% silt, 47.7	quidity Index 1.1 % clay, 2.3% sand				3212							/				
LA TEN				- trace till inclusions b	elow 10 m				G273											
ECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DAT				END OF TEST HOLE NOTES: 1. Sloughing and seep 2. Upon completion of 3. Test hole backfilled	AT 10.7 m IN CLA page observed belo drilling, test hole o with auger cutting	Y open to 4.9 m s and bentor	n, water la	evel	I 4.6	i m b.	/l gra	de.			TION	DEPTH	1: 10.6	7 m		
BH GEO	Co	y K Insul	EGR	GV KOBINSO Geotechnical Engine	ers		REVIEWE PROJECT	D BY	1: GF GINE	R R: G	il Robi	nson	COMPLETION DATE: 26/7/19 Page 1 of 1							

PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Ru	ada	a Inc.	TEST H	IOLE NO	: 19-15	52								
	ATION	: UTM	14U: 5526394 m N, 6277: Paddaak Drilling Ltd							PROJECT NO.: 143691							
SAM	PLE T	YPE	GRAB		SPLIT SPOON		ULK	(
BAC	KFILL	TYPE	BENTONITE	GRAVEL			BROL	UT	Cu	ITTINGS	SAND						
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	sc	DIL DESCRIPTI	ION	SAMPLE TYPE	SAMPLE #		+ Torvane (Su) k 10 20 30 40 50 △ Pocket Pen. (Su)	Pa + <u>60 70</u>) kPa ∆	◆ SF 10 20 ■ U 12 14 PL	$60 7$ $3 \blacksquare$ $22 2$ LL \blacksquare	<u>0</u>				
Ē	Ē		TOPSOIL (100 mm t	hick) - black, dry					<u>10 20 30 40 50</u>	<u> 60 70 </u>		<u> </u>		<u>60 /</u>	<u>.</u>		
-232	-1		SILT - light brown, moist, l	oose			G23	37				R.		 	· · · · ·		
-231 -230 -229 -228 -227 -226 -227 -226 -227 -226 -227 -226 -227	2 3 4 4 5 6 1 7 8 10		CLAY (Glaciolacustri - mottled brown and - moist, stiff, high pla - trace silt inclusions G240: PL 32, LL 91, 99.9% clay, 0 - below 5 m; trace sa END OF TEST HOLE NOTES: 1. No sloughing or sa 2. Upon completion of 3. Test hole backfille	ne) - silty grey sticity Liquidity Index 0.4 .1% sand and, trace gravel, g E AT 10.7 m IN CL sepage observed of d rilling, test hole d with auger cuttin	AY during drilling. open to 10.7 m, d gs and bentonite c	ry. hips.	G23 G24 G24 G24 G24 G24	338.		₽							
	YR	EGR	OV ROBINS	DN INC.	LOG REV	GED BY: IEWED B	CR Y: (R GR	D: Cil Dabinaga	COMPLE	ETION DE	PTH: 1 TE: 26/	0.67 n 17/19	1			

LUCATION UNATUR 2004 TWA 2015 mE PROJECT NOT 1000 - 2015 RS Dall w125 mm SS Augurs PROJECT NOT 1000 - 2015 RS Dall w125 mm SS Augurs PROJECT NOT 1000 - 2015 RS Dall w125 mm SS Augurs SAMPLE TYPE IPRA IIII STUTIE IPRA IIII STUTIE IPRA IIII STUTIE IPRA IIIII STUTIE IPRA IIIII STUTIE IPRA IIIIII STUTIE IPRA IIIIII STUTIE IPRA IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PRO	ECT:	Ferry	/ Rd. &	Riverbend CSR - Ru	Cana	ida Inc.			TES	T HOL	E NO:	19-′	155						
SMPLE TYPE Issue Imitade A note:	LOCA	TION:		/I 14U: { Paddor	526691 m N, 62778 http://www.second.com/commences/commences/commences/commences/commences/commences/commences/commences/commences/		FR SS Drill w/125	mm SS Auro		FLEVATION (m): 233.632										
BACKFILL TYPE BENTOWTE CORVEL CORVEL CORVER CONTROL	SAME	PLE TY	PE	1 44400	GRAB				BULK			NO	RECO	VERY]cor	E			
Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description Image: Solid Description	BACk	FILL T	YPE		BENTONITE	GRAVEL	SLOUGH		GROL	JT		CU								
CONCRETE (130 mm Bick) - sidewalk CONCRETE (130 mm Bick) - sidewalk CLAY (Glaciolaustrine) - sity - back moet, sitf, high plasticity SLT (Glaciolaustrine) - sity - moist, sitf, high plasticity - trace sit inclusions - grey below 5.5 m - grey below 5.5 m - grey below 5.5 m - trace till inclusions, trace gravel below 10.4 - trace till inclusions, trace to some clay, trace sand, trace gravel, grave, doss - END OF TEST HOLE AT 12.3 m IN SILT(TILL) NOTES - 1. No sloughing or sepage observed during drilling. - 2. 25 m PTO Standybe plazometer W Cassagrande tip installed 12.3 m bil grade. - The play of the trace below T.O.P Ground water elevation - 226.9 m Nov 13, 2019: 5.10 m below T.O.P Ground water elevation - 226.9 m Nov 13, 2019: 5.10 m below T.O.P Ground water elevation - 226.9 m Nov 13, 2019: 5.10 m below T.O.P Ground water elevation - 226.9 m Nov 13, 2019: 5.10 m below T.O.P.	ELEVATION (m)	DEPTH (m)	SLOTTED PIEZOMETER	SOIL SYMBOL	5	SOIL DESCRI	PTION	SAMPLE TYPE	SAMPLE #		+ Torvane (Si 20 30 40 confined Com 20 30 40 Pocket Pen. (u) kF <u>50</u> np. (S <u>50</u> (Su)	Pa + <u>60</u> 7 Su) kPa <u>60</u> 7 kPa ∆	o ▲ 0	◆ SP 10 20 ■ U 12 14 PL	T N blc 30 4 Init Wei 16 7	ows/300r 40 50 ight kN/r 18 20	mm ♦ 60 7 n ³ ■ 22 2	<u>70</u> 24	
233 1 CLAY - silly, trace organics 233 - - - 233 - - - 233 - - - 233 - - - 233 - - - 234 - - - 235 - - - 231 - - - 233 - - - 234 - - - 235 - - - 234 - - - 235 - - - 236 - - - 237 - - - 238 - - - 239 - - - 231 - - - 232 - - - 236 - - - 237 - - - 238 - -	Ē			77		30 mm thick) - sid	lewalk		G31	10	<u>20 30 40</u>	50	60 7	0	<u>10 20</u>	30 4	<u>40 50</u>	<u>60</u>	<u>70</u>	
222 223 224 224 1	233	-1			CLAY - silty, trac - black, moist, st SILT - light brow	ce organics tiff, high plasticity /n, moist, loose	1		G31	2								· · · · · · · · · · · · · · · · · · ·		
230	-232	-2			- mottled brown - moist, stiff, hig - trace silt inclus	custrine) - silty and grey h plasticity sions														
Provide the set of the se	-231	-3							T31	4			·····			•••				
228 - - grey below 5.5 m 227 -7 -7 226 -6 - 227 -7 -7 226 -6 - 227 -7 -7 226 -6 - 227 -7 -7 226 -6 - -7 -7 - 224 -10 - -11 - - -223 -11 - -11 - - -222 -11 - -11 - - -222 -11 - -11 - - -222 -11 - -11 - - -222 - - -11 - - -222 - - -11 - - -222 - - -223 - - -224 - - -225 <td>-230</td> <td>4</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>G31</td> <td>5</td> <td></td> <td></td> <td></td> <td></td> <td>· · · · · · · · · · · · · · · · · · ·</td> <td></td> <td>•</td> <td></td> <td></td>	-230	4							G31	5					· · · · · · · · · · · · · · · · · · ·		•			
223 - grey below 0.5 mil 224 - frace till inclusions, trace gravel below 10.4 223 - trace till inclusions, trace gravel below 10.4 224 - trace till inclusions, trace gravel below 10.4 222 - trace till inclusions, trace gravel below 10.4 222 - trace till inclusions, trace gravel below 10.4 222 - trace till inclusions, trace gravel below 10.4 222 - trace till inclusions, trace gravel below 10.4 222 - trace till inclusions, trace gravel below 10.4 222 - trace till inclusions, trace gravel below 10.4 222 - trace till inclusions, trace gravel below 10.4 3319 - trace till inclusions, trace gravel below 10.4 222 - trace till inclusions, trace gravel below 10.4 3319 - trace till inclusions, trace gravel below 10.4 3319 - trace till inclusions, trace gravel below 10.4 No stoughing or seepage observed during drilling, 2, 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 12.3 m b/l grade. Top of pipe (T.O.P) 0.075 m below T.O.P Ground water elevation - 226.29 m Nov 13, 2019; 5.10 m below T.O.P Ground water elevation - 226.29 m Nov 13, 2019; 5.10 m below T.O.P Ground water elevation - 226.29 m Nay 25, 2020; 6.59 m below T.O.P Ground water elevation - 226.97 m DYREGROV ROBINSON INC. ComPLETION DEPTH: 12	-229	-5			grov bolow 5 5	~														
7 9 225 9 9 - trace till inclusions, trace gravel below 10.4 - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusions, trace to some clay, trace sand, trace - trace till inclusion to trace to some clay, trace sand, trace - trace till inclusion to trace to some clay, trace sand, trace - trace till inclusion to trace tot trace tot trace tot trace to trace tot trace to trace to trace	-227	6			- grey below 5.5	111			G31	6					· · · · · · · · · · · · · · · · · · ·		•			
8 9 3318 224 10 - trace till inclusions, trace gravel below 10.4 11 - trace till inclusions, trace gravel below 10.4 222 12 - trace till inclusions, trace gravel below 10.4 3318 - stace gravel, grey, wet, loose END OF TEST HOLE AT 12.3 m IN SILT(TILL) NOTES: 1. No sloughing or seepage observed during drilling. 2. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 12.3 m b/l grade. Top of pipe (T-O.P) 0.075 m below grade. Water levels: Sept 23, 2019: 7.27 m below T.O.P Ground water elevation - 226.29 m Nov 13, 2019: 5.10 m below T.O.P Ground water elevation - 226.29 m Nav 25, 2020: 6.59 m below T.O.P Ground water elevation - 228.46 m May 25, 2020: 6.59 m below T.O.P Ground water elevation - 228.46 m May 25, 2020: 6.59 m below T.O.P Ground water elevation - 226.97 m DYREGROV ROBINSON INC. Consulting Geotechnical Engineers	226	-7							G31	7							•	· · · · · · · · · · · · · · · · · · ·		
9 10 - trace till inclusions, trace gravel below 10.4 -222 11 - trace till inclusions, trace gravel below 10.4 -222 12 - trace till inclusions, trace gravel below 10.4 -222 12 - trace till inclusions, trace gravel below 10.4 -222	225	-8							531	8										
-223 - trace till inclusions, trace gravel below 10.4 -222 - trace till inclusions, trace gravel below 10.4 -222 - 11 -222 - 12 -11 - trace till inclusions, trace gravel below 10.4 -222 - 12 -12 - trace till inclusions, trace gravel below 10.4 -222 - 12 -12 - 11 -222 - 12 -12 - 11 -222 - 12 -12 - 12 -222 - 12 -222 - 12 -222 - 12 -222 - 12 -222 - 12 -222 - 12 -222 - 12 -222 - 12 -222 - 12 -223 - 12 -224 - 12 -225 - 12 -226 - 12 -227 - 12 -228 - 12 -232 - 12 -232 - 12 -232 - 12 -232	224	9									· · · · · · · · · · · · · · · · · · ·									
222 12 SILT (TILL) - trace to some clay, trace sand, trace gravel, grey, wet, loose END OF TEST HOLE AT 12.3 m IN SILT(TILL) NOTES:	223	-10			- trace till inclusi	ions, trace gravel	l below 10.4		G31	9								· · · · · · · · · · · · · · · · · · ·		
Image: Sill T (TILL) - trace to some clay, trace sand, trace gravel, grey, wet, loose END OF TEST HOLE AT 12.3 m IN SILT(TILL) NOTES: 1. No sloughing or seepage observed during drilling. 2. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 12.3 m b/l grade. Top of pipe (T.O.P) 0.075 m below grade. Water levels: Sept 23, 2019: 7.27 m below T.O.P Ground water elevation - 226.29 m Nov 13, 2019: 5.10 m below T.O.P Ground water elevation - 228.46 m May 25, 2020: 6.59 m below T.O.P Ground water elevation - 226.97 m DYREGROV ROBINSON INC. Consulting Geotechnical Engineers	222	-12														/	· · · · · · · · · · · · · · · · · · ·			
END OF TEST HOLE AT 12.3 m IN SILT(TILL) NOTES: 1. No sloughing or seepage observed during drilling. 2. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 12.3 m b/l grade. Top of pipe (T.O.P) 0.075 m below grade. Water levels: Sept 23, 2019: 7.27 m below T.O.P Ground water elevation - 226.29 m Nov 13, 2019: 5.10 m below T.O.P Ground water elevation - 228.46 m May 25, 2020: 6.59 m below T.O.P Ground water elevation - 226.97 m DYREGROV ROBINSON INC. Consulting Geotechnical Engineers LOGGED BY: CR COMPLETION DEPTH: 12.34 m REVIEWED BY: GR COMPLETION DATE: 30/7/19 PROJECT ENGINEER: Gil Robinson Page 1 of			E	00	SILT (TILL) - tra ∖gravel, grey, we	ce to some clay, t, loose	trace sand, tra	ce 📕	G32	0	÷;;								<u>.</u>	
DYREGROV ROBINSON INC. LOGGED BY: CR COMPLETION DEPTH: 12.34 m Consulting Geotechnical Engineers REVIEWED BY: GR COMPLETION DATE: 30/7/19 PROJECT ENGINEER: Gil Robinson Page 1 of	END OF TEST HOLE AT 12.3 m IN SILT(TILL) NOTES: 1. No sloughing or seepage observed during drilling. 2. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 12.3 m b/l grade. Top of pipe (T.O.P) 0.075 m below grade. Water levels: Sept 23, 2019: 7.27 m below T.O.P Ground water elevation - 226.29 m Nov 13, 2019: 5.10 m below T.O.P Ground water elevation - 228.46 m May 25, 2020: 6.59 m below T.O.P Ground water elevation - 226.97 m																			
Consulting Geotechnical Engineers Reviewed B1: GR COMPLETION DATE: 30//19 PROJECT ENGINEER: Gil Robinson Page 1 of	D	YR	EG	ROV		ON INC.										PTH:	12.34 1	n		
		nsul	ting	Geot	echnical Engin		PROJECT ENGINEER: Gil Robinson						Page 1 of 1							

PROJECT: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer CLIENT: Tetra Tech Canada Inc. TEST HOLE NO: 19-156 LOCATION: LITM 1411: 5526736 m N 627787 m E PROJECT NO: 143601																	
CONT	RACT		140: 5526736 m N, 627787 Paddock Drilling I td		SS Drill w/125 r	mm SS Aur	norg	<u> </u>			FI F\/ΔTION (m) 233 608						
SAME	PLETY	PE	GRAB				BU	JLK		NO							
BACK	FILL T	YPE	BENTONITE	GRAVEL			GR	ROUT	т 🛛	CUT							
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SOI	L DESCRIPTIC	DN		SAMPLE IYPE	SAMPLE #	+ Torvane (S 10 20 30 40 Δ Pocket Pen. (u) kF <u>50</u> (Su) I	Pa + <u>60 70</u> kPa ∆		SPT N b 20 30 Unit W 4 16	40 5 /eight k 18 2	00mm 0 60 N/m³ ■ 0 22 LL LL	▶ 70 24	
-	=	****	CONCRETE (100 mm				321	<u>10 20 30 40</u>	<u>.50</u>	<u>60 70</u>		<u>:0 30</u>	40 5	<u>0 60</u>	<u>70</u>		
-233	-1	∖CLAY (FILL) - trace sa SILT - light brown, dry	olack, moist, s	tiff	G	5322 5322					/						
-232	CLAY (Glaciolacustrine) - silty - mottled brown and grey																
-231			- trace silt inclusions	loty			G	3 23									
-230		\square					G	6324						ſ			
-229							G	325	· · · · · · · · · · · · · · · · · · ·					•			
-228	-5		- grey below 5 m					-									
	6	\square	- firm below 6 m T326: PL 24, LL 79, Lie	auidity Index 0.4				326	⊥				· · · · · · ·	•		······································	
227	-7		92.1% clay, 7.8	% silt, 0.1% sand			⊔⊥ ■G	5327	· · · · · · · · · · · · · · · · · · ·								
226	8																
-225	9						G	5328	k								
224	-10							-	· · · · · · · · · · · · · · · · · · ·	· · · · · ·						•••••••••	
223	-11						G	5329)	•••••			/	/			
222	-12		Below 11.5 m:	race cand trace a			G	330		· · · · ·							
	- 12		END OF TEST HOLE NOTES: 1. No sloughing or see 2. Test hole backfilled Sidewalk patched w	AT 12.2 m IN CLA page observed du with auger cutting ith concrete.	rring drilling. s and bentoni	te chips.								. 10.4	<u> </u>		
D	YRE	EGR	OV ROBINSO	N INC.	-	LOGGED BY: CR						COMPLETION DEPTH: 12.19 m					
Co	onsult	ing (Geotechnical Engine	F	PROJECT ENGINEER: Gil Robinson						COMPLETION DATE: 30/7/19 Page 1 of 1						
-																	

PROJECT: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer CLIENT: Tetra Tech Canada Inc. TEST HOLE NO: 19-157 LOCATION: LITM 1411: 5526707 m N 627789 m E DDOUECT NO: 442004 DDOUECT NO: 442004																
			14U: 5526797 M N, 627789 addock Drilling Ltd		mm 99 Au		rc		ELEVATION (m): 222 706							
SAME		/PF						UIK		RECOVER	$\frac{1000}{1000}$ (III). 2	ORF				
BACK		YPE	BENTONITE	GRAVEL			G	ROU		TTINGS	AND					
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SOI	L DESCRIPTIC	DN		SAMPLE TYPE	SAMPLE #	+ Torvane (Su) kl 10 20 30 40 50 ▲ Unconfined Comp. (S 10 20 30 40 50 △ Pocket Pen. (Su)	Pa + <u>60 70</u> Su) kPa ▲ <u>60 70</u> kPa ∆	◆ SPT N 10 20 3 ■ Unit 12 14 1 PL	I blows/300 D 40 50 Weight kN/r 5 18 20 M/C (%)	mm ♦ 60 70 m ³ ■ 22 24			
=	=	77	CONCRETE (100 mm	thick) - sidewalk					<u>10 20 30 40 50</u> : : : : :	<u>60 70</u> : :	10 20 3	<u>) 40 50</u> : :	60 70			
233	-1		CLAY - silty, trace orga - black, moist, stiff, hig SILT - light brown, moi	anics h plasticity st, loose				G331	· · · · · · · · · · · · · · · · · · ·							
-232	CLAY (Glaciolacustrine) - silty - mottled brown / grey - mottlet brown / grey								· · · · · · · · · · · · · · · · · · · ·							
-231	-3		- trace silt inclusions	lony				G333	,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,, ,			\				
230	-4										· · · · · · · · · · · · · · · · · · ·					
229	-5							5334		· · · · · · · · · · · · · · · · · · ·						
-228	6							G335				•				
227	-7		- grey, firm below 6 m													
226								G336	j			•				
225			T337: PL 18, LL 55, Li 51 9% clay_36.9	quidity Index 0.9 3% silt_11.2% san	d											
224	10		Below 9 m; trace to so	me sand, trace gra	ıd, trace gravel, trace ti	l		Т337	▲ &+		···· • • • • • • • • • • • • • • • • •		•			
223		00000 00000 00000000000000000000000000	SILT (TILL) - trace san - grey - moist, compact	d, trace gravel			\sim	6339								
			- some clay at 11.5 m					G339				(
222	-12		CLAY - silty - grey, moist stiff high	plasticity						· · · · · · · · · · · · · · · · · · ·						
END OF TEST HOLE AT 12.2 m IN CLAY NOTES: 1. No sloughing observed during drilling. 2. Slight seepage observed at 10.7 m from silt till layer. 3. Upon completion of drilling, test hole open to 11.3 m b/l grade, dry. 4. Test hole backfilled with auger cuttings and bentonite chips. Sidewalk patched with concrete.																
D	YR	EGR	OV ROBINSO	N INC.			<u>אר</u> אים נ	CR		COMPLE	PLETION DEPTH: 12.19 m					
	nsul	ting (Geotechnical Engine							COMPLETION DATE: 30/7/19 Page 1 of 1						
· L		-														

PROJECT: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer CLIENT: Tetra Tech Canada Inc. TEST HOLE NO: 19-158 LOCATION: LITM 1411: 5526228 m N 627700 m E DOUTOT NO: 440004																			
		TON:		14U: 5526828 m N, 627790		• •					PROJECT NO.: 143691								
						SS Drill W/125 mm S		ers			7.00	ELEVATION (m): 233./34							
SAN				GRAB					IT		JNU Zou								
BAC		·ILL I	TPE	BENTONITE	GRAVEL	IIIII SLOUGH					μu	TINGS		.⊡SAI	ND				
ELEVATION (m)		DEPTH (m)	SOIL SYMBOL	SOI	L DESCRIPTIC	ЛС	SAMPLE TYPE	SAMPLE #	10 ▲ U 10	+ Torvane (; 20 30 40 Jnconfined Co 20 30 40 △ Pocket Pen	Su) ki <u>50</u> mp. (: <u>50</u> . (Su)	Pa + 60 70 Su) kPa ▲ 60 70 kPa ∆	10	SPT N b 20 30 ∎ Unit W 14 16 PL M	40 50 40 50 eight kN 18 20	00mm ◀ 0 60 N/m³ ■ 0 22 LL	▶ 70 24		
-	+			CONCRETE (125 mm	thick) - sidewalk				10	20 30 40	50	60 70	10	20 30	40 5	0 <u>60</u>	70		
Ē	Ē		ŽŽ	CLAY (FILL) - silty, tra	ce organics, trace	sand, black, mois	t /				· · · · ·				• • • • • •	· · · · ·			
E-233	3 E	-1		CLAY (Glaciolacustrin	e) - silty			G34	4					•					
Ē	- black with trace organics to 1.5 m										····.				• • • • • •				
-232	2 E			- moist, stiff, high plas	ticity			534	12										
Ē	Ē	-2		- trace silt inclusions					<u>.</u>				<u>:</u>						
E-23	1 È							G34		•••••••••••••••••••••••••••••••••••••••						· · · · · · · · · · · · · · · · · · ·			
Ē	Έ	-3]				
Ē	Ē													÷		•••••			
E-230	ᅊ	-4												·····					
Ē	E	т																	
E-229	9Ē						h								• • • • • •				
Ē	Ē	-5					Щ	134	4					•	/				
E	Ē													÷		•••••			
Ē	°E	-6						G34	5							· · · · · · · · · · · · · · · · · · ·			
Ē	Ē			- grey below 6 m															
227	7È	_														(····			
	Ē	-7						G 34	6	•••••••••••••••••••••••••••••••••••••••		· · · · · · · · · · · · · · · · · · ·				•			
220	۶Ē								·					÷		.			
	Ē	-8									· · · ·					.			
ν Έ	E													······································					
22 E	5 E	-0						G34	17				:	: : :		•			
έE	E	5							····		····: :	· · · · · · · · · · · · · · · · · · ·	···· :	÷•••••••••••••••••••••••••••••••••••••	····/:	· · · · · · · · · · · · · · · · · · ·	•••		
5 -224	4Ē													÷					
	Ē	-10		- trace till inclusions. tr	ace sand. trace o	ravel below 10 m											•••••••••••••••••••••••••••••••••••••••		
	Ē			,,				34	8					······································	T				
	۶Ę	-11												÷	· [· · · · ·				
Ē	Ē									••••	· · · ·					•••••			
<u>-</u> 222	2 E	10						G34	19										
	F	12				v			1:		:		:	: :			_:		
2				NOTES:		N I													
5				1. No seepage observ	ed during drilling.	Test hole squeeze	d in a	t 10	m.										
2				 Upon completion of 3. Test hole backfilled 	with auger cutting	open to 10 m b/l gr is and bentonite ch	ade, d lips	ary.											
				Sidewalk patched w	ith concrete.	,													
2 1																			
107																			
202																			
2																			
	יר		GP			LOGO	LOGGED BY: CR COMPLETION DEPTH: 1					12.19	9 m						
	J ∎ `or	i i X II hsi ili	tina (ers	REVIE	EWED E	3Y: (GR	010		COMPLETION DATE: 31/7/19							
					PROJ	PROJECT ENGINEER: Gil Robinson						Page 1 of 1							
PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Rutl	and Trunk Sewer	CLIENT:	Tetra Tech	Cana	ada Inc.		TEST H	OLE NO:	19-159							
---------------	--	-------------	---	--	------------	------------	-------------	------------------	---	---	--------------------------------------	--	--						
	TION:		14U: 5526888 m N, 627792 Jaddaak Drilling Ltd								$\frac{\text{CT NO}(1)}{10}$	43691	0						
SAME		DR. P		MSHELBY TUBE			ers BUIK	<u></u>				233.010 CORE	5						
BACK	(FILL 1	TYPE	BENTONITE	GRAVEL			GRO	UT		UTTINGS		SAND							
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SOI	L DESCRIPTI	ON		SAMPLE #	10 ▲ Un 10	+ Torvane (Su) 20 30 40 5 confined Comp. 20 30 40 5 Pocket Pen. (Su	kPa + 0 60 70 (Su) kPa ▲ 0 60 70 ı) kPa ∆	◆ SPT 10 20 3 ■ Uni 12 14 -	N blows/30 30 40 5 t Weight kl 16 18 2 M/C (%)	00mm ♦ 50 60 70 N/m ³ ■ 20 22 24						
Ē	E	77	CONCRETE (125 mm	thick) - sidewalk		/		10	20 30 40 5	0 60 70	10 20 ;	<u>30 40 5</u>	50 60 70						
-233	-1		CLAY (Glaciolacustrin - black with trace orga - mottled brown and g - moist, stiff, high plas - trace silt inclusions	e) - silty nics to 1.5 m rey below 1.5 m ticity			G38	50											
-231	-3						G35	52				•							
229	5						G35	53											
228	6						G35	54											
226	8		Below 7.5 m: trace sa	nd, trace gravel,	grey, firm	Ī	Тз5	55											
225	9						G35	56)						
223	10		Below 10 m: some till	inclusions			G35	57			Ý								
-222							G35	58											
	³ 11 ² 12 ¹² 12 ¹³ END OF TEST HOLE AT 12.2 m IN CLAY NOTES: 1. Sloughing and seepage observed from till inclusions below 11 m. 2. Upon completion of drilling, test hole open to 8.8 m, water level 5.5 m b/l grade. 3. Test hole backfilled with auger cuttings and bentonite chips. Sidewalk patched with concrete.																		
D	YRI	EGR	OV ROBINSO	N INC.			CR			COMPLE		H: 12.1	9 m						
	onsul	ting (Geotechnical Engine	ers	-	PROJECT E	NGIN	JR IEER: G	il Robinson			2. 31//1 Pa	age 1 of 1						
					I					-									

PRO	OJEC	CT: F	erry R	d. & Riverbend CSR - Rutl	and Trunk Sewer	CLIENT:	Tetra Tech Canada Inc.		TEST H	OLE NO: 19-160
LOC	CATI	ON:	UTM 1	14U: 5526926 m N, 627793	3 m E				PROJE	CT NO.: 143691
COL			DR: Pa	addock Drilling Ltd.		R SS Drill w/125	mm SS Augers		ELEVAI	ION (m): 233.925
SAN		יד וו <u>ב</u>		GRAB						
ELEVATION (m)		DEPTH (m)	SOIL SYMBOL		SOIL DI	ESCRIPTIC	DN		SAMPLE TYPE SAMPLE #	 ◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 10 20 30 40 50 60 70
Ē	ŧ	R	***	CONCRETE (125 mm	thick) - sidewalk				/ G 359	
-23	3 -1	1		CLAY (FILL) - silty, tra SILT - light brown, mo	ice organics, trace ist, loose	e gravel, blacł	k, moist, stiff		G360	
-23	2 2 2	2		 mottled brown and g moist, stiff, high plas trace silt inclusions 	rey ticity				G36 ²	
-23	143	3							G 362	
-23		4							G 363	\$
-22	з <u>п</u> с	5							G 364	
202/8/50	747	7							 G365	s
57 2, 2013.GL	8 	3								
	5 <u> </u> 9 4 <u> </u> 1) 10							G366	
	3 - 1	11		SILT (TILL) - trace to s - grey, loose, moist	some clay, trace	sand, trace gr	avel		тз67	•
<u>ا</u> ن	F	ķ	140,401			T(TILL) (ALLO				
TECH PLOTS-AUGUST 2013 143691./_KUTLAND TRUNK_GINI				LIND OF TEST HOLE NOTES: 1. Sloughing and seep 2. Upon completion of 3. Test hole backfilled Sidewalk patched w	AT 11.3 m IN SIL page observed fro drilling, test hole with auger cutting vith concrete.	m Till b/l 10.7 open to 11 m gs and bentor	ER REFUSAL) m. b/l grade and water leve ite chips.	el 5.8 m	b/l grade	e. TION DEPTH: 11.28 m
	Y	RE	GR	OV ROBINSO	N INC.		REVIEWED BY: GR		COMPLE	TION DATE: 31/7/19
	.on:	sult	ng G	eolechnical Engine	EI 2		PROJECT ENGINEER: Gil Ro	obinson		Page 1 of 1

PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Ruth	and Trunk Sewer	CLIENT:	Tetra Te	ch C	Cana	da Inc.	TEST H	OLE NO: 19-	161
LOC	ATION		14U: 5527027 m N, 627798		0.0.1.1.1405						CT NO.: 1436	<u>)91</u>
CON		IUK: P				OM SS A	uge ⊒ ⊳	rs III V				∔.∠U1 p=
BAC												
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	CONCRETE (125 mm	L DESCRIPTIO	N			SAMPLE #	+ Torvane (Su) k 10 20 30 40 50 ▲ Unconfined Comp. (10 20 30 40 50 △ Pocket Pen. (Su) 10 20 30 40 50 	Pa + 60 70 Su) kPa ▲ 60 70) kPa △ 60 70	◆ SPT N bl 10 20 30 ■ Unit We 12 14 16 PL Mi 10 20 30	$\begin{array}{c} \\ \text{sym}/300\text{mm} \blacklozenge \\ \underline{40} 50 60 70 \\ \text{sight kN/m}^3 \blacksquare \\ \underline{18} 20 22 24 \\ \hline 18 20 22 24 \\ \hline 0 1 \\ \underline{40} 50 60 70 \\ \hline 0 1 \\ \hline 0 50 60 70 \\ \hline 0 1 \\ \hline 0 $
	Ē.		CLAY - silty, trace org	anics, black, moist.) - brown, m stiff. high p	lastictv	/	55/6				
-233	E-1		SILT - light brown, loos	se, moist	oun, ngn p	laotioty		G379				
-232	-2		CLAY (Glaciolacustring - mottled brown and gr - moist, stiff, high plast - trace silt inclusions	e) - silty ey icity				G38()	01		
-229 -2229 -2228 -2228 -2228 -2228 -2228	4 5 6 7		- grey, wet, firm below	6 m				T381 G382 G383 G384		912		
925 527 527 527 527 527 527 527 5	9		SILT AND CLAY (TILL - grey, loose, wet \G386: 50.9% silt, 44.7) - trace sand, trace % clay, 4.1% sand	e gravel			G389			•	•
ECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DATA T			END OF TEST HOLE . NOTES: 1. SPT attempted after 2. No sloughing obser 3. Some seepage obser 4. Upon completion of After auger refusal, 5.Test hole backfilled Sidewalk patched w	AT 10.1 m IN SILT(refusal, no penetra ved during drilling. erved from silt till la drilling, test hole of air was blowing out with auger cuttings ith concrete.	(TILL) (AUG ation sampl yer below 9 pen to 10.1 t of the test and benton	ER REF er bounc 0.5 m. m, water hole. ite chips	US, ing r lev	AL) /el 6	5 m b/l grade.	COMPLE		10.06 m
	YR onsul	EGR ting C	OV ROBINSO Geotechnical Engine	N INC. ers		REVIEWE	ED B'	Y: G GINE	R ER: Gil Robinson	COMPLE	TION DATE: 1	/8/19 Page 1 of 1

PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Ruth	and Trunk Sewer	CLIENT:	Tetra Tec	h C	anad	la Inc.	TES	ST HO		IO: 1	9-162		
LOC	ATION	: UTM	14U: 5527094 m N, 627801	mE						PRO	OJEC	T NO	.: 143	3691		
CON	TRAC	TOR: P	addock Drilling Ltd.	METHOD: ACKER	SS Drill w/125	mm SS Au	igei	ſS		ELE	EVATI	ION (I	m): 2	34.342	2	
SAM		YPE	GRAB			ON	BI	JLK		IO RECO	OVERY	/				
BAC			BENTONITE	GRAVEL	IIIISLOUGH	<u>[.</u>	G	ROUI		UTTING	5S		<u> </u> S/	ND		
(m) NC	(E)	MBOL					ТҮРЕ	# IJ	+ Torvane (Su)	kPa + 5 <u>0 6</u> 0	70	◆ 10	SPT N 20 30	blows/3 40 5	00mm • 0 60	◆ 70
EVATIO	DEPTH	OIL SYI	SOI	L DESCRIPTIC	ON		SAMPLE	SAMPL	▲ Unconfined Comp	. (Su) kPa 5 <u>0 6</u> 0	a ▲ 70	12	Unit V	Veight k <u>1,8</u> 2	N/m³∎ 0 22	2 <u>4</u>
		٥ ۵					0 0		△ Pocket Pen. (S	iu) kPa∆ 50 60	70	10	PL 20 30	M/C (%)		70
-234	Ē	77		thick) - sidewalk	- 1:66											
Ē	Ē		CLAY - slity, trace orga	anics - black, dry, s loose	SUIT	/		-200							 	
-233	E-1		- moist below 1 m	rown and grove m	oict stiff			2380								
Ē	<u>–</u> 2		SILT - light brown, mo	st. loose	oist, still			G390				····•; ••••			· · · · · ·	
E-232	Ē		CLAX (Clasiclesustrin						····	·····		· · · ÷ · ·	\		· · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Ē	2		- mottled brown and gr	e) - Silly Tev				G391				· · · · . :				
E-231	Ē		- moist, stiff, high plast	icity					· · · · · · · · · · · · · · · · · · ·	·····		· · · · · · · · · · · · · · · · · · ·			; ; .	
Ē	Ē		- trace slit inclusions						···· : : : : : : : : : : : : : : : : :	: : :		· · · · : :		.\	: : :	· · · · :
E 220	<u>-</u> 4							G392		·····		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
E-230	Ē								: ::::::::::::::::::::::::::::::::::::		· · · · ÷ · · ·			: 		
Ē	-5							••••	·····		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·	· · · ; · · · · ·	
E-229	Ē		- grey below 5 m						· · · · · · · · · · · · · · · · · · ·		· · · · .	÷;		: : : · · · · : : :		
Ē	6						G393	····			· · · ÷ · · · · · · · ;					
-228	Ē															
1111	Ë ,											· · · · · · · · · · · ·			· · · · · · ·	
%E ⊢E-227	Ē		- firm below 7 m						····	·····		· · · · · · · · · · · · · · · · · · ·				
3.GD	Ē		T394: PL 23, LL 70, Li								· · · · · · · · · · · · · · · · · · ·			· · · · · · · ·		
201 102 102 102 102 102 102 102 102 102	8		89.8% clay, 9.5%				Т394	Δ †Δ			· · · · · · · · · · · · · · · · · · ·	·····		<u>.</u> .		
ST 220	Ē							206				• • • • • • • • •			<u>.</u>	
	-9							5393		·····		· · · · · · · · · · · · · · · · · · ·	÷			
	Ē		SILT (TILL) - trace to s	ome clav, trace sa	and, trace or	avel				: : :		· · · · : :		/:		
	-10	00000	- grey, moist, compact	to dense						·····		· · · · · · · · · · · · · · · · · · ·			· · · · · · · · ·	•••••••••••••••••••••••••••••••••••••••
≝Е-224 ⊴Е	Ē	0000	- SPT attempted after bouncing	refusal, no penetra	ation sample	r	\square	6396 G397		· · · · · · · · · · · · · · · · · · ·					· · · · · ·	
DH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DA	SILT (TILL) - trace to some clay, trace sand, trace gravel - grey, moist, compact to dense - SPT attempted after refusal, no penetration sampler bouncing END OF TEST HOLE AT 10.7 m IN SILT(TILL) (AUGER REFUSAL) NOTES: 1. No sloughing or seepage observed. 2. Upon completion of drilling, test hole open to 10.7 m & dry. After auger refusal, air was blowing out of the test hole. 3. Test hole backfilled with auger cuttings and bentonite chips. Sidewalk patched with concrete. DOCED BY: CP															
	YR	EGR	OV ROBINSO	N INC.			אי: ראר	<u>0</u> R ∕∙∩⊏	2					1/8/10	/ m	
D R	onsul	ting C	Geotechnical Engine	ers		PROJECT	EN	GINE	ER: Gil Robinson				21 YI L.	P	age 1	of 1

PRO	IECT:	Ferry F	d. & Riverbend CSR - Ri	utland Trunk Sewer	CLIENT	Tetra Tech	Са	anac	da Inc.			TES	r hol	E N	0: 1	9-16	63		
LOCA	TION:	: UTM ′	14U: 5527147 m N, 6278	02 m E								PRO	JECT	NO	.: 14	369	1		
CON		IUR: P	addock Drilling Ltd.		K SS Drill w/125	mm SS Aug	jer I Di	S			7	ELE)N (r	n): 2	234.6	517		
BAC									r		_по Лсп								
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	CONCRETE (125 m CLAY - silty, trace or	DIL DESCRIPT	ION		SAMPLE IYPE	SAMPLE #	- 10 : ▲ Unc 10 : 	F Torvane (20 30 40 20 30 40 20 30 40 Pocket Pen 20 30 40	Su) kl 50 mp. (\$. (Su) 50 	Pa + 60 7/ Su) kPa, 60 7/ kPa ∆ 60 7/ 		10 12 10	SPT N 20 3 Unit 14 1 PL 20 3 	N blows 0 40 Weigh 6 18 M/C (° 0 40	s/300m 50 nt kN/m 20 %) 50	m ♦ 60 7 3 ■ 22 2 LL 	<u>'0</u>
-233	2		- black, moist, stiff, h SILT - light brown, lo CLAY (Glaciolacustr - mottled brown and - moist, stiff, high pla - trace silt inclusions	igh plasticity ose, moist ine) - silty grey sticity		/		3399 3399											
-231	4		- grey, wet, firm belo				G401					· · · · · · · · · · · · · · · · · · ·							
228							Г402 Э403 Э404			+4									
-224	-10		SILT (TILL) -trace to - grey, loose, moist - SPT attempted afte bouncing	some clay, trace s r refusal, no pene	sand, trace gra tration sample	avel r		5405 5406					· · · · · · · · · · · · · · · · · · ·					· · · · · · · · · · · · · · · · · · ·	
			END OF TEST HOLI Notes: 1. No sloughing or se 2. Upon completion of 2. Test hole backfille Sidewalk patched	E AT 11.7 m IN SII eepage observed. of drilling, test hole d with auger cuttin with concrete.	LT(TILL)(AUG open to 11.7 ligs and bento	ER REFUS m & dry. hite chips.	SA	L)											
D Co	YRI onsul	E GR ting C	OV ROBINS Geotechnical Engin	DN INC. leers		LOGGED BY REVIEWED PROJECT E	/: By NC	CR ': GF GINE	R ER: Gi	l Robinso	n	COM COM	PLETI PLETI	on e On e)EPT)ATE	H: 1′ : 1/8/	1.73 m /19 Page	1 1 c	of 1

PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Ru	Itland Trunk Sewer	CLIENT:	Tetra Tech	Са	anao	da Inc.			TEST	HOLE	NO:	19-164	4		
			14U: 5527192 m N, 62780 Paddock Drilling I td			mm CC Aug	or	~						10.: 1 1 (m):	43691 234 6/	11		
SAM		YPE					BU	5 К]	<u></u>			<u>((())</u>	204.04 CORF	+1		_
BAC	KFILL T	TYPE	BENTONITE	GRAVEL			GF		Г	F	// CU	ITTINGS			SAND			_
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SC		ΓΙΟΝ		SAMPLE IYPE	SAMPLE #		+ Torvane 20 30 confined (20 30 Pocket Pe	e (Su) k 40 50 Comp. (: 40 50 en. (Su)	Pa + 60 70 Su) kPa ▲ 60 70	1(◆ SPT → 20 ■ Un 2 14 PL	N blows/ 30 40 it Weight 16 18 M/C (%	(300mm 50 6 kN/m ³ 20 2	n ♦ 0 70 ■ 2 24	
-	F	77	CONCRETE (125 mr	n thick) - sidewal	k				<u>10</u>	<u>20 30</u> : :	<u>40 50</u> : :	<u>60 70</u> : :	1(<u>20</u>	<u>30 40</u>	50 6	<u>0 70</u>	
-234	Ē		CLAY - silty, trace or	ganics				3407			·····)			
Ē	<u>-</u> 1		- black moist, stiff, high pla	sticity						· · · · · · · · · · · · · · · · · · ·	<u>.</u>	····						
E-233	Ē		SILT - light brown, m	oist, loose			-	340 8										
Ē	<u>-</u> 2		CLAY (Glaciolacustri	ne) - silty										····				
E	Ē		- mottled brown and	grey sticity														
E-232	-3		- trace silt inclusions	Sticity			C	G409)		·····	····; · · · ; ·		•••••		1		
Ē	Ē															<u>}</u>		
E-231	Ē,													•••••				
Ē	4							G410)									
E-230	Ē										<u>.</u>	····:		••••				
Ē	5													· · · · · · · · · · · · · · · · · · ·				
E-229	Ē																	
Ē	<u>–</u> 6					ŀ	5411			· · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·			••••	
E ano	Ē		- below 6 m; grey, we										••••					
	E_7								· · · · · · · · · · · · · · · · · · ·	<u>.</u>	····;···;·						· · ·	
	Ē									::			••••					
5E-227	Ē,				П	T,	F/ 1 2			:: +:	···· · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			· · ·	
27 /2	Ē		- trace gravel below 8	8 m		Ц	Ц	1412		· · · · · · · · · · · · · · · · · · ·	: 					Ţ	· · · · ·	
<u>-</u> 226	Ē							G413				····; · · · ; ·		· · · · · · · · · · · · · · · · · · ·		•	· · · · · ·	
	<u>-</u> 9		SILT (TILL) - trace to	some clay, trace	sand trace or	avel						••••						
-225	Ē		- grey	some day, trade	, sand, trace gr		∆£	5414			÷			1 /				
	E-10		- moist, loose to com	pact								····		. ¥	· · · · · · · · · · · · · · · · · · ·			
E-224	Ē													/				
	E-11		compact below 11 r	~			$\langle $	5415					,, ¢					
	Ē	04040	- SPT attempted afte	r refusal, no pene	etration sample	r 🚽		-416								• • • • • •		
<u>-223</u>	<u> </u>	NARAN	_bouncing			/□												_
			END OF TEST HOLE Notes: 1. No sloughing obse 2. Some seepage fro 3. Upon completion of 4. Test hole backfille Sidewalk patched	E AT 11.7 m IN S erved during drillin om silt till layer. of drilling, test hol d with auger cutti with concrete.	ILT(TILL) (AUG ng. le open to 11.7 ings and bento	ER REFUS m, water le hite chips.	SA >ve	NL) el 6	.8 m I	o/l gra	de.							
	YR	EGR	OV ROBINS	ON INC.		LOGGED BY	/: (COMP			TH: 11	.73 m		_
	onsul	tina (Geotechnical Engin	eers			BY NC	GI GIN⊑		il Robins	on	COMP	LETIO	N DATI	: 2/8/	19 Page	1 of	1
		5	J				NC		LIN. U			1				aye	i Ul	I

PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Rut	land Trunk Sewer	CLIENT	Tetra Teo	ch C	ana	da Inc.		TEST H	OLE NO	: 19-1	65	
			14U: 5527232 m N, 627806									CINO.:	14369)] 671	
SAM		YPF				$\frac{1}{100}$	uge ∃B	UIK			RECOVER	юк (III) Y П	. 234. Icorf	=	
BAC	KFILL	TYPE	BENTONITE	GRAVEL			G	ROU	Г		TTINGS)	
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SO		DN		SAMPLE TYPE	SAMPLE #	+ 10 20 ▲ Unco 10 20 △ Pe	Torvane (Su) kl 30 40 50 Infined Comp. (30 40 50 Docket Pen. (Su)	Pa + 60 70 Su) kPa ▲ 60 70 kPa ∆	♦ SF 10 20 ■ U 12 14 PL		vs/300m 0 50 ht kN/m 8 20 (%)	m ♦ 60 70 ³ ■ 22 24
		77	CONCRETE (125 mm	n thick) - sidewalk FILL, 100 mm thic	k) - brown, m	noist		C 4 4 -	10 20	30 40 50	<u>60 70</u>	10_20	30 40	<u>0 50</u>	60 70
E-234	E 1		CLAY - silty, trace org	anics	,,			G41 <i>1</i>							
- 222			_SILT - light brown, mo	bist, loose]		G418			••••			····	••••••
233	2		CLAY (Glaciolacustrin - mottled brown and g	ne) - silty rev									\mathbf{X}		
-232			- moist, stiff, high plas	ticity				5410					<u>`</u>		
	-3														
-231											•••••				
Ē	<u>-</u> 4							G420	· · · · · · · · · · · · · · · ·		••••	····			• • • • • • • • • • • • • • • • • • • •
-230															
Ē	-9														
E-229	-6														
E			- below 6 m; trace gra	vel, grey, moist to	wet			T421		••▲•••••+	-∆;····		· · · · P	····• ···•	••••••
228	-7														
"E 								G422			· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·		•	
	8											:			
₹ <u></u> 226			- trace till inclusions, t	race sand, trace g	ravel below 8	3.5 m		C 4 0 0							
	-9			-				6423							
225		000	SILT (TILL) - trace to	some clay, trace s	and, trace gr	avel					••••				
	-10 F		- moist, loose to comp	pact with depth							· · · · · · · · · · · · · · · · · · ·				· · · · · · · · · · · · · · · · · · ·
<u>}</u>	E11						X	5424				•			
	Ē	0,00,00									· · · · · · · · · · · · · · · · · · ·				
5E-223 €E	-12		S425) SPT stopped d 15 blows & 150	ue to sampler bou) mm penetration	ncing after										
<u>}</u>	E	LHA:PAD						§425							
			END OF TEST HOLE Notes:	AT 12.3 m IN SIL	T(TILL) (AUG	SER REF	USA	AL)							
			 No sloughing or see Upon completion of 	epage observed du f drilling, test hole o	uring drilling. open to 11 m	n b/l grade	e ar	nd w	ater le	vel 9 m b/	l grade.				
6			 Test hole backfilled Sidewalk patched v 	with auger cutting vith concrete.	is and bento	nite chips	•								
107 10															
0000															
						1 OGGED	RΥ·	CR			COMPI F		PTH· 1	2 34 m	1
	YR	EGR	OV ROBINSO	ON INC.		REVIEWE	D B	Y: G	R		COMPLE	TION DA	TE: 2/8	3/19	
	onsul	ting C	peotecnnical Engine	ers		PROJECT	EN	GINE	ER: Gil	Robinson				Page	1 of 1

PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Ru	tland Trunk Sewer	CLIENT:	Tetra Tech	Can	nad	la Inc.	TEST H	OLE NO: 19	-166	
LOCA	ATION:		14U: 5527341 m N, 62781							PROJE	CT NO.: 143	691	
SAME		IUR. P			NIPO DIIII W/ 12:		iger: BUILI	<u>s</u> а к			$\frac{10N(III)}{2}$	04.943	
BACK	(FILL 1	TYPE	BENTONITE	GRAVEL			GRC	DUT		TTINGS	SA	ND	
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SO		ON		SAMPLE LTPE SAMDLE #		+ Torvane (Su) kl 10 20 30 40 50 ▲ Unconfined Comp. (3 10 20 30 40 50 △ Pocket Pen. (Su)	Pa + 60 70 Su) kPa ▲ 60 70 kPa ∆	◆ SPT N I 10 20 30 ■ Unit W 12 14 16 PL I I III III IIIIIIIIIIIIIIIIIIIIIIIII	blows/3000 40 50 /eight kN/r 18 20 M/C (%)	mm ♦ 60 70 m ³ ■ 22 24
-	E	77	TOPSOIL (100 mm th	nick) - black, dry		/			<u>10 20 30 40 50</u> <u>:</u> : : : :	<u>60 70 </u> ;	10 20 30	40 50	60 70
-234	-1		CLAY - silty, trace org - black, dry to moist, s	ganics stiff, high plasticity			G4	136			•		
-233	2		CLAY (Glaciolacustri	ose			G4	137 ·				••••••	
			 mottled brown and g moist, stiff, high plas 	ic) only grey sticity									
E-232	-3		- trace silt inclusions	-			-64	+30 ·					
-231	-4						64	139					
-230	-5		G439: PL 29, LL 78, I 90.9% clay, 8.8	₋iquidity Index 0.4 ፄ% silt, 0.3% sand								·····	
-229	6		- below 5.5 m; grey, v	vet, firm			_						
228	-7						<u></u> π4	40 ·	···· ▲ · +▲				
227	-8						G4	141.					
226			SILT (TILL) - trace to	some clay, traces	of sand, grave	el & 🗖	G4	142 [.]			e		
	-9		- grey, moist, dense S443: SPT performed	l after auger refusa	al		54	143 -			•		.103.
	-10		49.1% SIII, 45.5	% clay, 5% sand			C5	564					
224	-11					2	<s5< td=""><td>565 ·</td><td></td><td></td><td>•••••</td><td></td><td></td></s5<>	565 ·			•••••		
223	-12					Κ	C5	566		· · · · · · · · · · · · · · · · · · ·			
-	F	1.01:10:10	END OF TEST HOLE	AT 12.6 m IN SIL	T (TILL)	V	100	<u>, 1</u> ,					
			Notes: 1. No sloughing or se	epage observed d	uring drilling w	ith augers	5.						
			 Upon completion o Auger refusal occu Test hole backfilled 	red at 9 m b/l grad with auger cutting	rs, test nole of e, switched to is and benton	Den to 9.6 HQ coring te chips.	m t g wi	o/I ith	grade, dry. casing advance	er.			
										1			
D	YRI	EGR	OV ROBINSC	DN INC.	F		': Cl BV·	R GP	2		TION DEPTH	: 12.65 2/8/10	m
Co	onsul	ting (Geotechnical Engine	eers	-	PROJECT E	NGI	NEE	ER: Gil Robinson		TON DATE:	Pag	je 1 of 1
· L		-								1		9	

PR	DJECT	: Ferry I	Rd. & Riverbend CSR - Rut	land Trunk Sewer	CLIENT	Tetra Tec	h Canada Inc.		TEST H	OLE NO: 19-167
LOC		N: UTM	14U: 5527394 m N, 62781	4 m E					PROJEC	CT NO.: 143691
COL		TOR: F					Augers & HQ coring ⊐puu∠			ION (m): 234.591
DAC			BENTONITE							
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL		SOIL DE	SCRIPTIC	DN			SAMPLE TYPE SAMPLE #	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m ³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 10 20 30 40 50 60 70
23			TOPSOIL (50 mm thio CLAY (Glaciolacustrir - mottled brown and g - moist, stiff, high plas - trace silt inclusions	ck) - black, dry ne) - silty grey sticity				/	G452	
	7		Below 7 m: trace san	d, trace gravel, trad	ce till inclusi	ons				
2013.G	8		SILT (TILL) - trace to - grey, moist, loose	some clay, trace sa	and, trace gr	avel			11 7457	1
1212014 GINI GINI GINI GINI GINI GINI GINI GIN	3 5 10 4 11 3 12 2		S458) SPT stopped, s	sampler bouncing a	after 81 blow	s & 180 m	m penetration		S458 C556 S557 C558 S559 C560 S551 S551	
EOTECH PLOTS-AUGUST 2013 143691./_KUTLAN	DYR	TION DEPTH: 12.65 m								
	onsu	Iting (Geotechnical Engine	eers			ENGINEER: Gil Rohi	nson	COMPLE	Page 1 of 1
		-	5							

DOCKING-UND- ADDR: DOCKING-UND- Rodox Dulling LLU. NET HOD: ACKER MP8 Dull w125 mm SS Augers & HQ coring ELEVATION (m): 24.971 SAMFLE TYPE BERITONTE BRAKEL Sould Serve the Sould S	PRO		Ferry F	Rd. & Riverbend CSR - Ruti	land Trunk Sewer	CLIENT:	Tetra Tech	Са	anac	da Inc.	TEST H	IOLE NO: 19-168	
SAMPLE TYPE GRAE Image: Sector Tube	CON	TRAC	TOR: F	Paddock Drilling Ltd.	METHOD: ACKER	R MP8 Drill w/12	5 mm SS Ai	ICIE	ers 8	& HQ coring	ELEVA	TION (m): 234.971	
BACKFILL TYPE SENTORTE GRAVEL III SLOUCH DEROUT CUTTINGS SAID III SUBJECT SOIL DESCRIPTION III SUBJECT IIII SUBJECT IIII SUBJECT IIII SUBJECT IIII SUBJECT IIII SUBJECT IIII SUBJE	SAM	PLE T	YPE	GRAB		SPLIT SPO	ON 📕	BL	JLK		RECOVER		
University SOIL DESCRIPTION Image: Solid bit in the second of the s	BAC	KFILL -	TYPE	BENTONITE	GRAVEL	SLOUGH		GF	ROUT	г 🖉си	TTINGS	SAND	
234 1 UDSOL (150 m thick) - black, dry 234 1 ULAY - silty, trace organics 233 2 black, dry, silt, high plasticity 233 2 CLAY (claciolacustino) - silty 231 2 - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey - motiled brown and grey <th>ELEVATION (m)</th> <th>DEPTH (m)</th> <th>SOIL SYMBOL</th> <th>SOI</th> <th>IL DESCRIPTI</th> <th>ON</th> <th></th> <th>SAMPLE IYPE</th> <th>SAMPLE #</th> <th>+ Torvane (Su) k 10 20 30 40 50 ▲ Unconfined Comp. (10 20 30 40 50 △ Pocket Pen. (Su)</th> <th>Pa + 60 70 Su) kPa ▲ 60 70 kPa ∆</th> <th>◆ SPT N blows/300mr 10 20 30 40 50 6 ■ Unit Weight kN/m³ 12 14 16 18 20 2 PL M/C (%) L</th> <th>n ♦ 30 70 1 22 24</th>	ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SOI	IL DESCRIPTI	ON		SAMPLE IYPE	SAMPLE #	+ Torvane (Su) k 10 20 30 40 50 ▲ Unconfined Comp. (10 20 30 40 50 △ Pocket Pen. (Su)	Pa + 60 70 Su) kPa ▲ 60 70 kPa ∆	◆ SPT N blows/300mr 10 20 30 40 50 6 ■ Unit Weight kN/m ³ 12 14 16 18 20 2 PL M/C (%) L	n ♦ 30 70 1 22 24
234 1 CLAY - silly, trace organics - black, dry, stiff, ligh plasticity SILT - light brown, dry, loose 233 2 CLAY (Glaciolacustine) - silly - motiet brown and grey - moist, stiff, high plasticity - motiet brown and grey - moist, stiff, high plasticity - trace silt inclusions 444 231 -4 -4 -4 232 -5 -3 -4 231 -4 -4 -4 232 -5 -6 - grey below 6 m 228 -7 Below 7 m: trace sand, trace gravel, trace till inclusions -444 228 -7 Below 7 m: trace to some clay, some sand and gravel, trace till inclusions -556 227 -6 - dense to very dense below 9 m -556 225 -10 - dense to very dense below 9 m 556 225 -10 - dense to very dense below 9 m 556 225 -10 - dense to very dense below 9 m 556 225 -10 - dense to very dense below 9 m 556 225 -10 - dense to very dense below 9 m 556 225 -10 - dense to very dense below 9 m 556 224 -11	Ē	E		∖TOPSOIL (150 mm th i	ick) - black, dry			-		<u>10 20 30 40 50</u> : : : : :	<u>60 70</u>	<u>10 20 30 40 50 6</u>	<u>i0 70</u>
233 -2 CLAY (Glaciolacustrine) - silly - motist, silf, high plasticity - trace sill inclusions 231 -4 - motist, silf, high plasticity - trace sill inclusions 231 -4 230 -6 -7 Below 7 m: trace sand, trace gravel, trace till inclusions 227 -6 8 SILT (TILL) - trace to some clay, some sand and gravel, trace cobles - brown - motist, compact to dense - offerse - dense to very dense below 9 m 223 -10 224 -11 10 FEND OF TEST HOLE AT 12.6 m IN SILT(TILL) Notes: 1. No sloughing. Slight seepage observed at 8 m. 223 -12 10 Notes: 1. No sloughing. Slight seepage observed at 8 m. 2. Auger refusal occurred at 8 m // grade, switched to HO coring with casing advancer. 3. Alter drilling to auger refusal, task hole open to 8 m, water level 7.9 m b/l grade. 4. Test hole backfilled with auger cuttings and bentonite chips.	-234	1		CLAY - silty, trace org - black, dry, stiff, high SILT - light brown, dry	anics plasticity , loose				G444			_	
232 3 - grey below 6 m 239 -6 - grey below 6 m 229 -6 - grey below 6 m 228 -7 Below 7 m: trace sand, trace gravel, trace till inclusions 227 -6 SILT (TILL) - trace to some clay, some sand and gravel, trace cubles - brown - moist, compact to dense - dense to very dense below 9 m - dense to very dense below 9 m 223 -12 END OF TEST HOLE AT 12.6 m IN SILT(TILL) Notes: 1. No sloughing. Slight seepage observed at 8 m. 2. Auger refusal occurred at 8 m bil grade, switched to HQ coring with casing advancer. 3. After drilling to auger refusal, test hole open to 8 m, water level 7.9 m b/l grade. 4. Test hole backfilled with auger cuttings and bentonite chips.	-233	2		CLAY (Glaciolacustrin - mottled brown and g - moist, stiff, high plas - trace silt inclusions	e) - silty rey ticity		-		5446	· · · · · · · · · · · · · · · · · · · ·			· · · · · · · · · · · · · · · · · · ·
231 4 - grey below 6 m 228 - grey below 6 m 228 - grey below 6 m 228 - grey below 7 m: trace sand, trace gravel, trace till inclusions 227 - 8 3 SILT (TILL) - trace to some clay, some sand and gravel, trace cobles - brown - moist, compact to dense - 225 - 10 224 - 4 - 225 - 10 - 224 - 11 - 225 - 10 - 224 - 11 - 225 - 10 - 224 - 11 - 225 - 10 - 224 - 11 - 225 - 10 - 224 - 11 - 225 - 10 - 224 - 12 - 225 - 10 - 224 - 12 - 225 - 10 - 224 - 12 - 225 - 10 - 226 - 12 - 227 - 12 - 11 - 12.6 m IN SILT(TILL) Notes: - 12.6 m IN SiLT (TILL)	-232	3							Г447		+2		
220 -5 229 -6 -228 -7 Below 7 m: trace sand, trace gravel, trace till inclusions -227 -8 SILT (TILL) - trace to some clay, some sand and gravel, trace cobbles - brown - moist, compact to dense - 225 -10 -225 -10 -224 -11 -225 -10 -224 -11 -223 -224 -11 -225 -10 -224 -11 -225 -10 -224 -11 -225 -10 -224 -11 -225 -10 -224 -11 -225 -10 -224 -11 -225 -10 -226 -11 -227 -10 <t< td=""><td>-231</td><td>-4</td><td></td><td></td><td></td><td></td><td></td><td></td><td>3448</td><td></td><td></td><td></td><td></td></t<>	-231	-4							3 448				
229 6 - grey below 6 m 228 7 Below 7 m: trace sand, trace gravel, trace till inclusions 227 8 51LT (TILL) - trace to some clay, some sand and gravel, trace cobbles 226 9 9 225 10 moist, compact to dense 224 - dense to very dense below 9 m 6553 223 12 6554 224 11 6554 223 12 6554 224 11 6554 223 12 10 224 11 6554 225 10 6554 223 12 10 224 11 60 225 10 6554 224 11 60 223 12 10 10 10 10 11 10 10 124 10 10 125 10 10 125 11 10 126 11 10 127 12 10 <td>-230</td> <td>-5</td> <td></td> <td></td> <td></td> <td></td> <td>-</td> <td></td> <td>5449</td> <td>,</td> <td></td> <td>•</td> <td></td>	-230	-5					-		5449	,		•	
Below 7 m: trace sand, trace gravel, trace till inclusions -227 -8 -227 -8 -227 -8 -227 -9 -9 - brown - moist, compact to dense - dense to very dense below 9 m -224 -10 -224 -11 -224 -12 -10 -224 -11 -224 -12 -10 -223 -12 -10 -224 -11 -224 -11 -224 -12 -12 -224 -11 -224 -12 -224 -12 -224 -12 -12 -224 -12 -224 -12 -224 -12 -224 -12 -225 <	229	6		- grey below 6 m						····			· · · · · · · · · · · · · · · · · · ·
SILT (TILL) - trace to some clay, some sand and gravel, trace cobbles -226 -9 -226 -9 -225 -10 -224 -11 -223 -12 -224 -11 -223 -12 -11 -0 -224 -11 -223 -12 -12 -0 -224 -11 -223 -12 -12 -0 -224 -11 -224 -11 -223 -12 -12 -11 -224 -11 -225 -10 -224 -11 -225 -10 -224 -11 -11 -10 -223 -12 -224 -11 -225 -12 -226 -12 -227 -12 -228 -12 -229 -12 -220 -12 -221 -12 -223 -12 <		-7		Below 7 m: trace sand	d, trace gravel, tra	ace till inclusio	ons		3450		· · · · · · · · · · · · · · · · · · ·		
This, compact to derive - dense to very dense below 9 m - dense to very dense to very dense below 9 m - dense to very dense to ve	227	8		SILT (TILL) - trace to s trace cobbles - brown	some clay, some	sand and grav	/el,		6451	· · · · · · · · · · · · · · · · · · ·		•	
END OF TEST HOLE AT 12.6 m IN SILT(TILL) Notes: 1. No sloughing. Slight seepage observed at 8 m. 2. Auger refusal occured at 8 m b/l grade, switched to HQ coring with casing advancer. 3. After drilling to auger refusal, test hole open to 8 m, water level 7.9 m b/l grade. 4. Test hole backfilled with auger cuttings and bentonite chips.	226	9		- dense to very dense	below 9 m				S551	· · · · · · · · · · · · · · · · · · ·		•	.146.
END OF TEST HOLE AT 12.6 m IN SILT(TILL) Notes: 1. No sloughing. Slight seepage observed at 8 m. 2. Auger refusal occured at 8 m b/l grade, switched to HQ coring with casing advancer. 3. After drilling to auger refusal, test hole open to 8 m, water level 7.9 m b/l grade. 4. Test hole backfilled with auger cuttings and bentonite chips.		-10						¢	2552				
223 12 END OF TEST HOLE AT 12.6 m IN SILT(TILL) Notes: No sloughing. Slight seepage observed at 8 m. Auger refusal occured at 8 m b/l grade, switched to HQ coring with casing advancer. After drilling to auger refusal, test hole open to 8 m, water level 7.9 m b/l grade. Test hole backfilled with auger cuttings and bentonite chips. 	224	-11							6553			•	•
END OF TEST HOLE AT 12.6 m IN SILT(TILL) Notes: 1. No sloughing. Slight seepage observed at 8 m. 2. Auger refusal occured at 8 m b/l grade, switched to HQ coring with casing advancer. 3. After drilling to auger refusal, test hole open to 8 m, water level 7.9 m b/l grade. 4. Test hole backfilled with auger cuttings and bentonite chips.		-12							C554 S555			•	•
LOGGED BY: CR COMPLETION DEPTH: 12.65				END OF TEST HOLE Notes: 1. No sloughing. Sligh 2. Auger refusal occur 3. After drilling to auge 4. Test hole backfilled	AT 12.6 m IN SIL t seepage observ ed at 8 m b/l grac er refusal, test hol with auger cutting	-T(TILL) ved at 8 m. de, switched to le open to 8 m gs and bentor	D HQ coring , water lev lite chips.	g \ el	with 7.9	o casing advance o m b/l grade.	er.	ETION DEPTH: 12.65 m	
DYREGROV ROBINSON INC. COMPLETION DEPTID. COM		YR	EGR	OV ROBINSO	N INC.		REVIEWED	BY	': G	۲	COMPLE	ETION DATE: 14/8/19	
Consulting Geotechnical Engineers PROJECT ENGINEER: Gil Robinson Pag		onsul	ting (Seotechnical Engine	ers		PROJECT E	NG	SINE	ER: Gil Robinson		Page	1 of 1

PROJECT: Ferry	Rd. & Riverbend CSR - Ruth	and Trunk Sewer	CLIENT:	Fetra Tech	Cana	ada Inc.	TEST H	IOLE NO: 19-169
LOCATION: UTI	/ 14U: 5527517 m N, 627817 Deddaek Drilling Ltd					8 110 aaniman		CT NO.: 143691
SAMPLE TYPE					BUI K			$\frac{1000}{1000} (11). 234.910$
BACKFILL TYPE	BENTONITE	GRAVEL			GROL	л 🛛	UTTINGS	SAND
ELEVATION (m) DEPTH (m) SOIL SYMBOL	SOI	L DESCRIPTIO	NC	SAMDI E TVDE	SAMPLE #	+ Torvane (Su) 10 20 30 40 5 ▲ Unconfined Comp. 10 20 30 40 5 △ Pocket Pen. (Su)	kPa + 0 60 70 (Su) kPa ▲ 0 60 70 J) kPa ∆	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m ³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 0 20 20 20 50 m 70
-234 -1 -233 -2 -232 -3 -231 -4 -230 -5 -229 -6	TOPSOIL (300 mm thi CLAY (Glaciolacustrin - black with trace orga - mottled brown / grey - moist, stiff, high plast - trace silt inclusions - below 5 m; trace san - grey below 5.5 m	ck) - black, moist e) - silty nics to 1.8 m below 1.8 m ticity			G45 G46 G46 G46 G46	19 19 10 11 11 12 13	+2	
	SILT (TILL) - trace to s trace cobbles - grey - moist - loose to compact bed END OF TEST HOLE Notes:	oome clay, trace s coming very dense AT 12.6 m IN SIL ⁻	and, trace gra e below 7.5 m T (TILL)	/el,	846 C54 S54 S54 C54 S54	4 4 5 6 7 8 9		 112 116 116 153
DYREG	1. No sloughing or see 2. High SPT-N at 8 m, 3. Test hole backfilled ROV ROBINSO Geotechnical Engine	epage observed du switched to HQ co with auger cutting	uring drilling w oring with casi is and bentoni	th augers ng advand te chips.	: cer. : CR 3Y: 0	9R	COMPLE	ETION DEPTH: 12.65 m ETION DATE: 14/8/19

PRC	JECT:	Ferry F	Rd. & Riverbend CSR - Rutl	and Trunk Sewer	CLIENT	Tetra Tech Canada I	nc.	TEST H	OLE NO: 19-170
LOC		I: UTM	14U: 5527560 m N, 627819	mE			.	PROJEC	CT NO.: 143691
COL		VDE							ION (m): 235.008
BAC			BENTONITE					TTINGS	
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL		SOIL DE	SCRIPTIO	DN		SAMPLE TYPE SAMPLE #	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m ³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 10 20 30 40 50 60 70
-234	3 - 2		TOPSOIL (50mm thick CLAY (Glaciolacustrin - black with trace orga - mottled brown / grey - moist, stiff, high plast - trace silt inclusions	() - black, moist e) - silty nics to 1.5 m below 1.5 m ticity				∫ ■ 3465 ■ 3466	\$ • •
-232	2 3		- grey below 5 m					- 3468 - 3469	
AUGUST 2, 2013.GDT 9/8/20 777777777777777777777777777777777777	3		SILT (TILL) - trace to s - grey - moist, loose - dry to moist, very der	some clay, traces c nse below 7.5 m	f sand, grav	/el, cobbles & bould	lers	5470 S471 C538	• 1194
11LAND TRUNK GINT.GPJ DATA TEMPLATE. 755 557 557 557 557 557 557 557 557 55	5 - 10 - 11 - 12 - 13	90000000000000000000000000000000000000	Below 11 m: - casing advancing rel - wet, loose to compace After SPT (S543), split Below 12.2 m: wet, loc	atively easy below st : barrel sampler dri sse	11 m ven to 13.4	m with no refusal		× 5539 C540 × 5541 C542 × 5543	
TECH PLOTS-AUGUST 2013 143691.7_RU	<u>E</u>		END OF TEST HOLE Notes: 1. No sloughing or see 2. Upon completion of 3. Auger refusal occur 4. Test hole backfilled	AT 13.4 m IN SILT page observed du drilling with augers ed at 8 m b/l grade with auger cuttings	(TILL) ring drilling s, test hole o , switched t s and bento	with augers. open to 7.4 m b/l gra o HQ coring with ca nite chips.	ade, dry. asing advance	r.	TION DEPTH: 13.41 m
	DYR	EGR	OV ROBINSO	N INC.		REVIEWED BY: GR		COMPLE	TION DATE: 15/8/19
<u>а</u> С	onsu	iling (seotechnical Engine	ers		PROJECT ENGINEER:	Gil Robinson		Page 1 of 1

PRO	IECT:	Ferry F	Rd. & Riverbend CSR - Rutl	and Trunk Sewer	CLIENT: T	etra Tech	Car	nada	a Inc.	TEST H	OLE NO:	19-171	
	TION:		14U: 5527597 m N, 627820 Joddook Drilling Ltd			mm CC Au					CT NO.: 1	43691	
SAME		PF					iger BUI	κ				234.907 CORF	
BACK	FILL 1	TYPE	BENTONITE	GRAVEL			GRC	JUT		ITTINGS		SAND	
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SOI	L DESCRIPTI	ON			SAMPLE #	+ Torvane (Su) k 10 20 30 40 50 ▲ Unconfined Comp. (10 20 30 40 50 △ Pocket Pen. (Su)	Pa + 60 70 Su) kPa ▲ 60 70	◆ SPT 10 20 ■ Un 12 14 PL	N blows/300i 30 40 50 iit Weight kN/r 16 18 20 M/C (%)	mm ♦ 60 70 n ³ ■ 22 24
Ē		//	TOPSOIL (75 mm thic	k) - black, moist				1.	<u>10 20 30 40 50</u>	<u>60 70</u>	<u>10 20</u>	<u>30 40 50</u>	<u>60 70</u>
-234	-1-2		CLAY (Glaciolacustrin - black with trace orga - mottled brown/grey b - moist, stiff, high plas - trace silt inclusions	e) - silty nics to 1.5 m pelow 1.5 m ticity			G4	472 473 -					
232	3						G4	474 ·					
-231	-4					Т			A. A				
-230	-5		Below 5 m: grey, firm,	trace sand, trace	gravel		G4	+75 476.	- 4-			-	
229	6			somo clav, traca s	and trace grav								
228	-7	00000 00000000000000000000000000000000	trace cobbles - grey - moist to wet, loose	some clay, trace s	anu, trace grav		G4	477.					140
227	-8		- dry to moist, very de	nse below 7.6 m			64 G4 C5	478 · 479 · 532					
226	9	00000				2	55	533			•		
225	10	0000 00000 00000					C5	534			· · · · · · · · · · · · · · · · · · ·		
224	-11	00000000000000000000000000000000000000				2	< 85 C5	535 · 536					
			- moist, dense below 1	12 m		\geq	<s5< td=""><td>537</td><td>· · · · · · · · · · · · · · · · · · ·</td><td></td><td></td><td>•</td><td></td></s5<>	537	· · · · · · · · · · · · · · · · · · ·			•	
			END OF TEST HOLE Notes: 1. No sloughing or see 2. Upon completion of 3. Auger refusal occur 4. Test hole backfilled	grade, dry. th casing advan	cer.								
D	YRI	EGR	OV ROBINSO	N INC.	L		': Cl	R)	COMPLE		TH: 12.65	m
	onsul	ting (Geotechnical Engine	ers	- -		BA: NGII	GR NEF	K ER: Gil Robinson		TION DAT	E: 19/8/19 Pan	e 1 of 1
· I			-							1			

CONT SAMP BACK () () () () () () () () () () () () () (FILL T	OR: P (PE (YPE	Paddock Drilling Ltd.		R MP8 Drill w/125 r	am SS Augora & HO aari	na		UTINU 143091				
BACK (m) NOILENATION (m)	FILL T	(PE TYPE							111101 (TT1): 755 Upp				
BACK (m) ELEVATION (m)	FILL T				SPLIT SPOON			RECOVER					
ELEVATION (m)	(u)		BENTONTE			GROUT		TTINGS					
	DEPTH	SOIL SYMBOL		SOIL D	ESCRIPTION			SAMPLE TYPE SAMPLE #	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m ³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL				
	-	77	TOPSOIL (75 mm th	iick) - black, moist				/	<u>10 20 30 40 50 60 70</u>				
-234 -233	-1		CLAY (Glaciolacustr - black with trace or - mottled brown/grey - moist, stiff, high pla - trace silt inclusions	ine) - silty ganics to 1.8 m y below 1.8 m asticity				G48	2				
								C 4 9					
232	-3							G48	3 				
-230 -229	-5 -6		- grey below 5.5 m					— G48	5				
-228	-7	00000000000000000000000000000000000000	SILT (TILL) - trace to - grey - moist, loose - dry to moist, dense	to very dense belc	of sand, gravel, w 7.5 m	cobbles & boulders		G48	6 7 6 140				
-227 -226	-9							G48 C52	8. 9				
-225	-10							C52	8				
-224	-11							×652					
223	-12							5 53	↓ ↓ ●				
	END OF TEST HOLE AT 12.6 m IN SILT(TILL) Notes: 1. No sloughing or seepage observed during drilling with augers. 2. High SPT-N at 7.5 m, switched to HQ coring with casing advancer. 3. Test hole backfilled with auger cuttings and bentonite chips.												
D	YRI	EGR	OV ROBINS	ON INC.		UGGED BY: CR EVIEWED BY: GR		COMPL	ETION DEPTH: 12.65 m ETION DATE: 15/8/19				
Co	nsul	ting C	Geotechnical Engir	neers	Pi	ROJECT ENGINEER: Gil R	obinson		Page 1 of 1				

PROJ	ECT:	Ferry	Rd. &	Riverbend CSR - Rutla	and Trunk Sewer	CLIENT:	Tetra Tec	h Canac	la Inc.	TEST H	OLE NO:	19-173		
LOCA	TION:	UTN	1 14U: {	5527675 m N, 627823	m E					PROJEC	CT NO.: 1	43691		
CONT		OR:	Paddoo	ck Drilling Ltd.		MP8 Drill w/12	5 mm SS /	Augers &	& HQ coring		10N (m):	235.16	2	
SAME				GRAB			JN E							
BACK	FILL I	YPE		BENTONITE	GRAVEL	IIIISLOUGH	<u>-</u>			JTTINGS	. <u>·</u> .	SAND		
(m) NO	(m)	TER	MBOL					TYPE E #	+ Torvane (Su) k <u>10 20 30 40 50</u>	(Pa + 60 70	♦ SPT 10 20	N blows/3 30 40 {	300mm 50 60	◆) 70
EVATIO	рертн	SLOTTE	IL SYI	S	OIL DESCRIPT	ION		AMPLE	▲ Unconfined Comp. ((Su) kPa ▲ 60 70	∎ Un 12 1 <u>4</u>	it Weight k <u>16 18 2</u>	⟨N/m³ 20 22	■ <u>2 2</u> 4
Ē		□	Ň					S	△ Pocket Pen. (Su) kPa ∆		M/C (%)		
-235	-		//	∖TOPSOIL (75 mm	n thick) - black, mo	oist	/			<u> </u>		<u>30 40 :</u>	<u>50 60</u>	<u>) 70</u>
Ē			$\langle \rangle$	CLAY (Glaciolacu	istrine) - silty			G490			•			
-234	-1			- mottled brown /	grey below 1.8 m							· : · · · · · · · · · · · · · · · · · ·	÷;	
Ē	-		\sim	 moist, stiff, high trace silt inclusion 	plasticity ons			G 491						
-233	-2				70	0.0								
	-			93.8% clay	78, Liquidity index , 5.8% silt, 0.4% s	0.3 and							÷	
E	-3													
232								Т493	····	B				
Ē	4													
E-231			$\langle \rangle$					G 494						
	_								•••••••••••••••••••••••••••••••••••••••				::::::::::::::::::::::::::::::::::::::	
-230	-5			SILT (TILL) - trac	e to some clav. tra	ces of sand.	aravel.	G495					÷	
Ē	-			cobbles & boulde	rs	,	3 ,					· · · · · · · · · · · · · · · · · · ·		
-229	-6		0,00,00	- grey - moist to wet. loo	se			H_{-}				• • • • • • • • • •	÷	
	_		0,0,0	- moist, dense to	very dense below	7 m						· · · · · · · · · · · · · · · · · · ·		
228	-7			S496: 55.3% silt,	39.5% clay, 4.7%	sand						· · · · · · · · · · · · · · · · · · ·	÷;	
				S497) SPT stopp	ed, sampler bound	cing after 50 b	olows &	5 497				· · · · · · · · · · · · · · · · · · ·		
0. 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1	-8			150 mm penetrati	ion							X		
~ <u>-</u> 227	-							C518						
₹ <u></u> -226								8519	····		••••	· · · · · · · · · · · · · · · · · · ·	•	
													<u>.</u>	
225	-10							C520						
ATA														
	-11							¥6521			••••			
	_							C522						
υ <u>Ε</u> ¥⊏223	-12											· · · · · · · · · · · · · · · · · · ·		
				S523) SPT stopp	ed, sampler bound	ing after 39 b	olows	E 523			•			
	-13			ior oou mini perier	ualion									
				BEDROCK				C524						
111	_1/		┝┸┰┸┰┸┰┸┰ ┙┙┙┙┙┙┙ ┝┸┰┸┰┸┰┸┰	- Red River Form	ation, Upper Fort (Garry Membe	er							
8 E-221	14			- poor to good qua	ality, good below 1	l4 m								
2013	_		┝┰┶┰┶┰┷┰╝ ┝┰┶┰┶┰┷┰┷ ┝┰┶┰┶┯┷┯┷	- whitish grey colo	or, strong to very s	trong		C525						
5 E-220	-15			- close to modera	tely close disconti	nuity spacing	l							
	-		┊╵┙	- gapped joint ape	eture, evidence of filling at 13.7 m ar	water flow (C nd 13.9 m	lass 3) _[;;		.ii	i	i
LOTS				- trace small vugs	s (< 0.5mm)									
	YR	EGI	ROV	/ ROBINSO	N INC.	ŀ			2			TH: 15.5	54 m 10	
ö E Co	nsult	ting	Geot	echnical Engine	ers	-	PROJECT	ENGINE	ER: Gil Robinson			15/6/ P	age 1	1 of 2
ш [-		-						1			~.go	

	PROJ	ECT:	Ferry I	Rd. & F	Riverbend CSR - I	Rutland Trunk Sewer	CLIENT: Te	tra Tech Canad	a Inc.	TEST HO	OLE NO: 19-173	
	LOCA	TION:	UTM	14U: 5	527675 m N, 627	823 m E				PROJEC	CT NO.: 143691	
	CONT	RACT	OR: F	Paddoc	k Drilling Ltd.	METHOD: ACKER	MP8 Drill w/125 n	m SS Augers &	HQ coring	ELEVAT	ION (m): 235.162	
	SAMP				GRAB					RECOVER		
	BACK	FILL I	YPE		BENTONITE			<u>.</u> ∎GROUT		TIINGS	[··]SAND	
	TION (m)	TH (m)	TTED METER	SYMBOL		SOIL DESCRIPT	ION	LE TYPE PLE # 	+ Torvane (Su) kl 10 20 30 40 50 ▲ Unconfined Comp. (\$	Pa + <u>60 70</u> Su) kPa ▲	◆ SPT N blows/300mr 10 20 30 40 50 6 ■ Unit Weight kN/m ³	n ♦ j0 70
	EVA	DEP.	SLO ⁻	OILS				SAMPI SAN	<u>10 20 30 40 50</u>	60 70	<u>12 14 16 18 20 2</u>	<u>;2 2</u> 4
	Ш		۵.	S			DEDDOOK	0)	△ Pocket Pen. (Su) 10 20 30 40 50	kPa ∆ 60 70	PL M/C (%) L 10 20 30 40 50 6	.∟ ∎ 30 70
i91.7_RUTLAND TRUNK_GINT.GPJ_DATA TEMPLATE - AUGUST 2, 2013.GDT_9/8/20					END OF TEST Notes: 1. No sloughir 2. Upon comp 3. Auger refus 4. 25 mm PVC Top of pipe (T Water levels: Sept 23, 2019 Nov 13, 2019: May 25, 2020:	THOLE AT 15.5 m IN Ig or seepage observe letion of drilling with a al occured at 7.5 m, Standpipe piezomet O.P) 0.05 m below g : 8.43 m below T.O.P 6.44 m below T.O.P 7.65 m below T.O.P	BEDROCK ed during driling ugers, test hole switched to HQ er w/ Cassagran rade. Ground wate 2 Ground wate Ground wate	with augers. open to 7.5 r coring with ca nde tip installe r elevation - 2 r elevation - 2 r elevation - 2	<u>10 20 30 40 50</u> n b/l grade, dry. asing advancer. ad 15.5 m b/l gra 26.68 m 228.67 m 27.46 m	0		0 70
H PLOTS-AUGUST 2013 1436												
TECH							LC	GGED BY: CR		COMPLE	TION DEPTH: 15.54 m	
GEO			:Gh inc (KOBINS	UN INC.	RE	VIEWED BY: GR		COMPLE	TION DATE: 15/8/19	
ВН		isult	ing (PF	OJECT ENGINEE	R: Gil Robinson		Page	2 of 2

PRC	JECT	Ferry	y Rd. & I	Riverbend CSR - Rutla	and Trunk Sewer	CLIENT:	Tetra Tech	Са	nad	la Inc.	TEST H	OLE NO: 1	9-239	
LOC		I: UTI	<u>M 14U: 8</u>	5526983 m N, 627796	mE						PROJEC	CT NO.: 14	3691	
CON		VDF	Paddoo	cpap		SS Drill w/125	mm SS Aug	gers Inu	; 		ELEVAI	ION (m): 2	34.085	
DAD														
LEAC			BOL	DENTONITE	C. GRAVEL		•••		#	+ Torvane (Su) kf	Pa + 60 7 <u>0</u>	◆ SPT N 10 20 30	blows/300m	nm ♦ 60 70
ILEVATIO	DEPTH (SLOTTEI PIFZOMFT	SOIL SYM	S	OIL DESCRIPT	ION		SAMPLET	SAMPLE	▲ Unconfined Comp. (\$ 10 20 30 40 50	Su) kPa ▲ 60 70	■ Unit \ <u>12 14 16</u> Pl	Weight kN/m <u>} 18 20</u> M/C (%)	1³ ■ <u>22 2</u> 4
	Ē		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	CONCRETE (125	i mm thick)		/г	2	360	<u>10 20 30 40 50</u>	<u>60 70</u>	10 20 30	40 50	60 70
-	Ē			SAND and GRAV	EL (FILL, 100 mm	thick) - brov	/n/		309			/		
-233	3 = 1			- black, moist, stif	f, high plasticity			G	370					
Ē	E			SILT - light brown	i, moist to wet, loos	e						\. 		
E-232	2 -2			- mottled brown a	nd grey									
Ē	E			 moist, stiff, high trace silt inclusion 	plasticity			-	371					
-231	-3		\langle / \rangle					ľ						
Ē	Ē									•••••••••••••••••••••••••••••••••••••••				
E-230) [-4													
	Ē		$\langle \rangle$											
E	5							т:	372	····	····+ <u>A</u> ···			
E 228	Ë						-	Щ						
Ē	Ē							G	373					
E-228	3 = 0			- grey below 6 m						••••				
00	Ē													
8 - 227	7 E-7							G	374	•••• ••••••••••••••••••••••••••••••••••			•••••	•••••••
I GE	Ē													
≣ <u></u> _226	5 - 8													
ST 2,	Ē													· · · · · · · · · · · · · · · · · · ·
	; E -9							G	375				•••••••••••••••••••••••••••••••••••••••)
	Ē												/	
	Ē			SILT (TILL) - trace	e to some clay, tra	ce sand, trad	e	G	376			•		
THE	Ē		0000	- grey, wet, loose	becoming compac	t with depth		$\overline{\mathbf{A}}$	377			•		
	3 - 11		1.41.41	END OF TEST H	OLE AT 11.1 m IN	SILT(TILL) (<u>ייעי</u> EF	<u>, 1</u> US	SAL)				
GINT				NOTES:	· · · ·									
				 Some sloughin Upon completion grade. 	g and seepage ob on of drilling, test h	ole open to	yer 0.6 m. 11 m b/l gi	rad	e, \	water level 7.9 m	ı b/l			
UTLAND				4. 25 mm PVC St Top of pipe (T.O.F	andpipe piezomete P) 0.05 m below gr	er w/ Cassag ade.	Irande tip i	inst	alle	ed 11.0 m b/l gra	ade.			
1.7_F				Sept 23, 2019: 7.0	66 m below T.O.P.	- Ground wa	ater elevat	ion	- 2	226.37 m				
4369				Nov 13, 2019: 5.	.50 m below T.O.P	Ground w	ater eleva	tion	י - 1 ק	228.53 m				
013				way 20, 2020. 0.	U A HI DOIOW T.O.F.				- 2					
JST 2														
AUGL														
OTS-														
)YP	FG	ROV				LOGGED B	Y: C	R		COMPLE	TION DEPTH	H: 11.13 n	n
	onsu	Itina	Geot	echnical Engine	ers			BA:	GF INI⊏	K FR: Gil Pobinson		TION DATE:	1/8/19 Poor	1 of 1
Ξ.					-			ING					rage	, 1 UI I

	PROJ	ECT:	Ferr	y Rd. &	Riverbend CSR - Ruth	and Trunk Sewer	CLIENT:	Tetra Tech	Cana	ada Inc.		TEST H	OLE NO: 1	9-240	
	LOCA	TION:	UTI	M 14U: {	5527296 m N, 627809	mE						PROJEC	CT NO.: 14	3691	
	CONT	RACT	OR:	Paddoo	ck Drilling Ltd.	METHOD: ACKER	SS Drill w/125	mm SS Aug	ers			ELEVAT	<u>ION (m): 2</u>	235.113	
-	SAMF	PLE TY	/PE		GRAB				BULK	<		RECOVER	Y [[]0	ORE	
-	BACK	FILL T	[YPE		BENTONITE	GRAVEL	[]]]]SLOUGH		GROL	UT	∐CU	TTINGS	S	AND	
	ELEVATION (m)	DEPTH (m)	SLOTTED	SOIL SYMBOL	S	OIL DESCRIPT	ION	SAMPI E TVPE	SAMPLE #	+ Torvan 10 20 30 ▲ Unconfined 1 10 20 30 △ Pocket P	e (Su) k <u>40 50</u> Comp. (* <u>40 50</u> Pen. (Su)	Pa + <u>60</u> 70 Su) kPa ▲ <u>60</u> 70 kPa △	◆ SPT N 10 20 3 ■ Unit 12 14 1 PL 10 20 3	I blows/300 0 40 50 Weight kN/ 6 18 20 M/C (%) 0 40 50)mm ♦ 60 70 /m³ ■ 22 24
Ē	-235	_		\overline{Z}	CLAY - silty, trace	e organics				10 20 30	40 50	<u> 60 70 </u>	10 20 3	<u>J 40 50</u>	<u> 60 70 </u>
	-234	-1			SILT - light brown, mois	st, loose, low plasti	city		G42 G42	2 6 27			• •		
	-233	-2			G427: PL 17, LL 2	22, Liquidity Index	1.0		G 42	28	•		•		
	-232	-3			- mottled brown a - moist, stiff, high - trace silt inclusio	nd grey plasticity ons			G42	29				•	
	-231	-4						Т		30					
	-230	-5			- trace sand, trace	e gravel below 5 m									
0	-229	-6			- grey, wet below	5.5 m			G43	31					P
13.GDT 9/8/2	-228	-7					_		G 43	32	• • • • • •			•	
JST 2, 20	-227	0	÷.		- trace to some til	I inclusions below a	8 m		G43	33				/	
E - AUG	-226	-9	· · · · · · · · · · · · · · · · · · ·		SILT (TILL) - trace gravel	e to some clay, trac	ce sand, tra	ce	5 43	34			•		
TEMPLAT	-225	-10			- grey - wet, very loose t	to loose									
INT.GPJ DA	-224	-11			- SPT attempted a	after refusal, no pe	netration sa	mpler	_643 ■643	35 36			•		
TECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GI					END OF TEST H NOTES: 1. Sloughing obse 2. No seepage ob 3. Upon completin 4. 25 mm PVC St Top of pipe (T.O.I. Water levels: Sept 23, 2019: 8. Nov 13, 2019: 7. May 25, 2020: 6.	OLE AT 11.9 m IN erved from silt till la oserved during drilli on of drilling test ho andpipe piezomete P) 0.05 m below gr 45 m below T.O.P. 80 m below T.O.P. 45 m below T.O.P.	SILT(TILL) (ayer below 9 ing. ble open to 9 er w/ Cassag ade. - Ground w - Ground w - Ground w	AUGER RE .4 m. 9.4 m, dry. grande tip ir ater elevati ater elevati ater elevati	EFU nsta on - ion - on -	ISAL) ISAL) 226.61 m - 227.26 m - 228.61 m	/l grac	de.	TION DEPT	H: 11.89	<u> </u>
BH GEC	Co	nsul	ting	Geot	echnical Engine	ers		REVIEWED E	BY: (NGIN	GR IEER: Gil Robin	son	COMPLE	TION DATE	: 2/8/19 Pag	ge 1 of 1

PR	DJECT:	Ferry F	Rd. & Riverbend CSR - Rutl	and Trunk Sewer	CLIENT:	Tetra Tech C	Canac	la Inc.	TEST H	OLE NO: 20-244	
LOC		I: UTM	14: 5527747 m N, 627803 r	n E					PROJEC	CT NO.: 143691	
CO		IOR: P	addock Drilling Ltd.	METHOD: ACKER	MP8 Drill w/12	5 mm SS Aug	gers &	K HQ coring		ION (m): 235.222	
BA			BENTONITE								
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL	SOI		DN	SAMPLE TYPE	SAMPLE #	+ Torvane (Su) k 10 20 30 40 50 ▲ Unconfined Comp. (10 20 30 40 50 △ Pocket Pen. (Su)	:Pa + 60 70 (Su) kPa ▲ 60 70) kPa ∆	◆ SPT N blows/300m 10 20 30 40 50 0 ■ Unit Weight kN/m ² 12 14 16 18 20 2 PL M/C (%)	m ♦ 60 70 ³ ■ 22 24
-23 -23 -23 -23			TOPSOIL (100mm thic CLAY (Glaciolacustrin - black with trace orga - mottled brown and gu - moist, stiff, high plast - trace silt inclusions Below 4 m: trace till inclusions, int	ck) - black, moist e) - silty, trace sar nics to 0.6 m rey below 0.6 m ticity ermediate to high	nd, trace grav	el	G1 G2 G3 G4 T5		60 70		<u>30 70</u>
DATA TEMPLATE - AUGUST 2, 2013.GDT 26/4/21			SILT (Till) - trace clay trace cobbles, trace bo - brown - moist, dense G7: Silt 53.5%, Clay 4	to clayey, trace sa bulders 3.1%, Sand 3.2%	nd, trace gra	vel,	G6 G7 C8 C10 C10 C12 C12				
DTECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ D.		ECD	END OF TEST HOLE Notes: 1. No sloughing or see 2. Auger refusal at 7 n 3. Test hole backfilled	AT 11.1 m IN SILT epage observed du b/l grade, switch with auger cutting	Γ (TILL) uring drilling v ed to HQ cori s and benton	vith augers. ng with cas ite chips.	ing a	advancer.			<u> </u>
	i i i i i i i i i i i i i i i i i i i	lting (Geotechnical Engine	ers		REVIEWED B PROJECT EN	Y: GF GINE	R ER: Gil Robinson	COMPLE	TION DATE: 11/12/20 Page	1 of 1

PF	ROJ	ECT:	Ferry F	Rd. & Riverbend CSR - Rutl	and Trunk Sewer	CLIENT:	Tetra Tech (Canada Inc.		TEST H	OLE NO:	20-245		
LC	CA	TION	: UTM ′	14U: 5527833 m N, 627830) m E					PROJE	CT NO.:	143691		
C	ONT	RAC	TOR: P	addock Drilling Ltd.	METHOD: ACKER	MP8 Drill w/12	25 mm SS Au	gers & HQ coring		ELEVA	FION (m):	235.30	5	
S/	AMP		YPE	GRAB			ON E	BULK		RECOVER	Υ []	JCORE		
BA	ACK	FILL		BENTONITE	GRAVEL	IIIISLOUGH	••	GROUT		TINGS	<u></u>	JSAND		
		DEPTH (m)	SOIL SYMBOL		SOIL DE	ESCRIPTIC	ЭN			SAMPLE TYPE SAMPLE #	◆ SP 10 20 ■ UI 12 14 PL 10 20	T N blows/3 <u>30</u> 40 5 nit Weight k <u>16</u> 18 2 <u>M/C (%)</u> <u>30</u> 40 5	00mm ◀ 0 60 N/m³ ■ 0 22 LL LL	▶ 70 24 70
-2	35	-	11	TOPSOIL (150mm thic	ck) - black, moist		_		/					<u></u>
TA TEMPLATE - AUGUST 2, 2013.GDT 26/4/21 The transmitter and the second s	 33 34 33 34 33 34 34 35 36 37 36 37 38 39 39 30 <	-1 -2 -3 -4 -5 -6 -7 -8 -9 -10		CLAY (Glaciolacustrin - black with trace orga - mottled brown and gi - moist, stiff - high plasticity - trace silt inclusions - intermediate to high G18: PL 14, LL 48, Lice SILT (Till) - trace clay - brown - loose, wet G20: Clay 49.6%, Silt - compact, moist below	e) - silty, trace sar nics to 0.6 m rey below 0.6 m plasticity below 4 r quidity Index 0.6 to clayey, trace sa 46.9%, Sand 3.3% w 7.5 m	nd, trace grav m ind, trace gra	vel, trace co	obbles		G14 G15 G16 G17 G17 G17 G18 G18 G18 G19 G20 G21 C22 C24 S23 C24 S25 C26				
GPJ -	-	-11	04040			τ /τη ι \				S27				
ECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.				Notes: 1. Frozen to 0.2 m. 2. No sloughing or see 3. Auger refusal at 6.4 4. Test hole backfilled	epage observed du m b/l grade, switc with auger cutting	uring drilling \ ched to HQ co is and bentor	with augers. oring with ca ite chips.	asing advancer.				JTL. 44 4	3 ~	
10 L	D	YR	EGR	OV ROBINSO	N INC.		LOGGED BY:	CR				PTH: 11.1	3 m /20	
H GE	Co	nsul	ting C	Geotechnical Engine	ers		PROJECT FN	IGINEER: Gil Robins	son	CONFLE		<u>E. 11/12</u> P:	20 age 1	of 1
ш <u>—</u>			-	-										

PRC	JECT:	Ferry F	Rd. & Riverbend CSR - Rut	and Trunk Sewer	CLIENT:	Tetra Tech	Cana	da Inc.	TEST H	OLE NO:	20-246	i	
LOC	ATION	I: UTM	14U: 5527903 m N, 627832	2 m E					PROJEC	CT NO.: 1	43691		
CON	ITRAC	TOR: P	addock Drilling Ltd.	METHOD: ACKER	R MP8 Drill w/12	25 mm SS Au	gers	& HQ coring	ELEVAT	ION (m):	235.43	6	
SAN	IPLE T	YPE	GRAB				BULK		D RECOVER	Y 🛄	CORE		
BAC	KFILL	TYPE	BENTONITE	GRAVEL	SLOUGH		GROU		JTTINGS		SAND		
(m) NO	(m) H	'MBOL				TVPF	1 # U	+ Torvane (Su) 10 20 30 40 50	(Pa +) 60 70	♦ SPT 10 20	N blows/3 30 40	300mm 50 60	◆) 70
ELEVAT	DEPT	SOIL SY	50	L DESCRIPTI	UN		SAMP	▲ Unconfined Comp. <u>10 20 30 40 50</u> △ Pocket Pen. (Su	(Su) kPa ▲ <u>6070</u>) kPa ∆	∎ Un <u>12 1,4</u> PL	It Weight <u>16 18</u> M/C (%)	kN/m ³ 20 22	2 <u>24</u>
D TRUNK_GINT.GPJ DATA TEMPLATE - AUGUST 2, 2013.GDT 26/4/21 232 233 234 235 235 235 237 237 237 237 237 237 237 237	2 3 4 5 6 7 8 9 5 10 10 10 10 10 10 10 10 10 10	S S S S S S S S S S S S S S S S S S S	TOPSOIL (100mm thi CLAY (Glaciolacustrin - black with trace orga - mottled brown and g - moist, stiff, high plas - trace silt inclusions - intermediate to high SILT (Till) - trace clay trace cobbles - brown - moist, compact S36: Silt 59%, Clay 32 S36: Silt 59%, Clay 32 - loose, moist to wet b END OF TEST HOLE Notes: 1. Frozen to 0.3 m. 2. No sloughing or set 3. Auger refusal at 6.7 4. Test hole backfilled	ck) - black, moist e) - silty, trace sar nics to 0.6 m rey below 0.6 m ticity plasticity below 4 to clayey, trace sa 2.8%, Sand 7.6% elow 10 m AT 11.1 m IN SIL ⁻ epage observed d m b/l grade, swite	m and, trace grav and, trace grav T (TILL) uring drilling v ched to HQ c	vel,	G28 G29 G30 T31 G32 G32 G33 C35 C37 C37 C37 C37 C37 C37 C37 C37 C37 C37	△ Pocket Pen. (Su 10 20 30 40 50) kPa ∆ <u>60 70</u> 				
TECH PLOTS-AUGUST 2013 143691.7_RUTLA						LOGGED BY	: CR		COMPLE	TION DEP	TH: 11.	13 m	
	PYR	EGR	OV ROBINSO	N INC.		REVIEWED E	3Y: G	R	COMPLE	TION DAT	E: 14/12	2/20	
ы Ш	onsu	Iting C	eotechnical Engine	ers		PROJECT EN	IGINE	ER: Gil Robinson			F	age ´	1 of 1

PRO	JECT:	Ferry F	Rd. & Riverbend CSR - Rut	and Trunk Sewer	CLIENT:	Tetra Tech Canada Inc.		TEST H	OLE NO: 20-247
LOC	ATION	I: UTM '	14 U: 5527984 m N, 62784					PROJE	CT NO.: 143691
CON		IOR: P	addock Drilling Ltd.		R MP8 Drill w/12	5 mm SS Augers & HQ co	oring	ELEVAI	11ON (m): 235.641
SAIN			GRAB						
ELEVATION (m)	DEPTH (m)	SOIL SYMBOL		SOIL D	ESCRIPTIC	DN		SAMPLE TYPE SAMPLE #	
233 233 233 233 233 233 233 233 233 233	1 1 2 3 4 4 5 6 7 8		TOPSOIL (150mm thi CLAY (Glaciolacustrin - black with trace orga - mottled brown and g - moist, stiff, high plas - trace silt inclusions - trace silt inclusions SILT (Till) - trace clay boulders - brown - moist, dense S46: Silt 49.6%, Clay S50) SPT Stopped, sa	ck) - black, moist e) - silty, trace sa nics to 0.6 m rey below 0.6 m ticity to clayey, trace sa 44%, Sand 6%	nd, trace grav	el vel, trace cobbles, trac		G41 G42 G43 G43 G44 G44 G44 G45 C47 S48 C49 S50 C51	
₽ ⊈ 225	Ē								
ECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ D	<u>E-11</u>		END OF TEST HOLE Notes: 1. Frozen to 0.3 m. 2. No sloughing or set 3. Auger refusal at 6 r 4. Test hole backfilled	er.					
	YR	EGR	OV ROBINSO	N INC.				COMPLE	TION DEPTH: 11.13 m TION DATE: 14/12/20
D C	onsu	Iting C	eotechnical Engine	ers		PROJECT ENGINEER: Gil	Robinson		Page 1 of 1

PRO	JECT:	Ferry	rd. &	Riverbend CSR - Ruth	and Trunk Sewer	CLIENT:	Tetra Tech	Са	anac	da Inc.		TEST	HOLE N	O: 20-	248	
LOCA			/ 14: 55	528050 m N, 627842 r										.: 1436	<u>91</u>	
SAM		YPF	Paddod				25 mm 55 A ON	uge BL	JLK	& HQ coring			RY).UZO RE	
BAC	KFILL	TYPE		BENTONITE	GRAVEL	SLOUGH]GF	ROUT	Г		ITTINGS		SAN	D	
ELEVATION (m)	DEPTH (m)	SLOTTED	SOIL SYMBOL	S	OIL DESCRIPT	ION		SAMPLE TYPE	SAMPLE #	+ Torva <u>10</u> 20 30 ▲ Unconfined <u>10</u> 20 30 △ Pocket	ne (Su) k <u>40 50</u> d Comp. (<u>40 50</u> Pen. (Su)	Pa + 60 70 Su) kPa ▲ 60 70	↓ 10 : 12	SPT N blo 20 30 - ∎ Unit We 14 16 PL M/	ows/300n 40 50 ight kN/n 18 20 ℃ (%)	nm ♦ 60 70 n ³ ■ 22 24
-235 -234 -233 -232 -231				TOPSOIL (150mr CLAY (Glaciolacu - black with trace - mottled brown a - moist, stiff, high - trace silt inclusio T55: PL 13, LL 43 SILT (Till) - trace gravel, trace cobt - brown - moist, dense S56: Silt 59.5%, 0	n thick) - black, mo istrine) - silty, trace organics to 0.9 m nd grey below 0.9 plasticity ons ns, intermediate to 3, Liquidity Index 0 clay to clayey, trac oles	oist e sand, trace m o high plastic .3 ce sand, trac 7.8%	e gravel		G53 T54 T55 S56 S57			<u>60</u> 70 + ∠∆				<u>60</u> 70
ATA TEMPLATE - AUGUST 2, 2013, 6401 26	0 6 7 8 8 8 8 8 9 9 7 8 5 9 SPT stopped, sampler 1					ng, no peneti	ration.		C58 S59 C60 S61 C62							
2225 2017 2225 2017 2017 2017 2017 2017 2017 2017 2017	11		00505050505050505050505050505050505050						S63 C64 S65 C66							.154.
PLOTS-AUGUST 2013 143691./ KI	14			S67) SPT Stoppe 75 mm penetratio	d, sampler bounci n	ng after 50 b	lows for		S67 C68 S69 C70							
	YRI onsul	EG I ting	ROV Geot	/ ROBINSO echnical Engine	N INC. ers		LOGGED B REVIEWED PROJECT E	Y: BY	CR ': GI GINE	R ER: Gil Robi	nson	COMPL	ETION D)EPTH:)ATE: 1	16.76 r 8/12/20 Page	n 9 9 1 of 2

[PROJ	ECT:	Ferry	Rd. & F	Riverbend CSR - Ru	utland Trunk Sewer	CLIENT: Tet	ra Tech Canad	da Inc.	TEST H	OLE NO: 20-248
	LOCA	TION:	UTM	14: 55	28050 m N, 627842	2 m E				PROJEC	CT NO.: 143691
	CONT	RACT	OR:	Paddoc	k Drilling Ltd.	METHOD: ACKE	R MP8 Drill w/125 m	m SS Augers &	& HQ coring	ELEVAT	TION (m): 236.028
	SAMP	LE TY	ΈE		GRAB		SPLIT SPOON	BULK		RECOVER	
	BACK	FILL T	YPE		BENTONITE	GRAVEL	SLOUGH	GROUT	r 🛛 🖾 CƯ	TTINGS	SAND
	(m) N	(m)	D TER	1BOL				- Т #	+ Torvane (Su) kł 10 20 30 40 50	Pa + 60 70	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70
	EVATIO	ОЕРТН	SLOTTE	OIL SYN	\$	SOIL DESCRIP	TION	AMPLE T	▲ Unconfined Comp. (\$ 10 20 30 40 50	Su) kPa ▲ <u>60 70</u>	■ Unit Weight kN/m ³ 12 14 16 18 20 22 24
	Ш		P	Ж	BEDROCK			N N	△ Pocket Pen. (Su) <u>10 20 30 40 50</u> : : : : :	kPa ∆ <u>60 70</u> : :	PL M/C (%) LL 10 20 30 40 50 60 70 : : : : : : : :
:91.7_RUTLAND TRUNK_GINT.GPJ DATA TEMPLATE - AUGUST 2, 2013.GDT 26/4/21					BEDROCK - Red River Forr (dolomite) - fair quality, wh - horizontal fract discontinuity spi- gapped joint a continued from p END OF TEST I Notes: 1. Frozen to 0.6 2. No sloughing 3. Upon comple 4. Auger refusal 5. 25 mm PVC 3 Top of pipe (T.C Water levels: Jan 7, 2021: 7.3 State of the spin sector	mation, Upper Forf itish grey color, str tures, very close to acing peture, evidence of <i>previous page</i> HOLE AT 16.8 m I or seepage obser tion of drilling to an l occured at 6.5 m, Standpipe piezome D.P) 0.05 m below 87 m b/I T.O.P G	t Garry Member rong to very strong o moderately close of water flow (Clase N BEDROCK ved during driling uger refusal, test switched to HQ of eter w/ Cassagrar grade. round water eleva	with augers. hole open to oring with ca de tip installe tion - 228.61	6.5 m b/l grade, asing advancer. ed 10.7 m b/l gra	dry. ade.	
3-AUGUST 2013 14.											
LOTS											
CH PI							1			1	
OTEC	Ŋ	YRF	EGI	201			LO	GGED BY: CR		COMPLE	TION DEPTH: 16.76 m
ЧGЕ	Co	nsuli	tina	Geot	echnical Engin	eers			K ED: Cil Dobinson		TION DATE: 18/12/20
商			5				PR				raye z ul z

4.12	1.2	3.2 ×	DYREGROV ROBINS	ON INC.	2.2	PRO	JECT #		and the second sec	TEST	HOLE NO.	
9 1	DRO	IECT.	CONSULTING GEOTECHNICA	LENGINEERS		11	3324		OCCED BY	1 PB	12-11	
	LOCA	TION:	Rutland St. at Ness Ave.					RE	VIEWED BY:	AOD		
C	ONTRAC	TOR:	Paddock Drilling Ltd.			1. N.	1	C	RILL DATE:	April 20, 2012	2	1. N. 1
	MET	HOD:	Acker Soil Sentry - 125 mm SSA					DRILL	DEPTH (m):	12.2		las e
DEPTH (m)	ELEVATION (m)	SOIL SYMBOL	SOIL DES	SCRIPTION	PIEZOMETER	UNDRAIN STR QU UI CC TV TC PP PC Y UI	NED SHI ENGTH Su NCONFI OMPRES DRVANE DCKET I	EAR NED SSION E PEN. GHT	0.0 1	Test Res	ults ture Content (%)	60.0 70.0
0.00	234.77	DP	0 - 0.17 m CONCRETE		·		1000		0.00			
0.50	234.27	$\langle \rangle$	0.17 - 0.46 m CLAY (Fill) - silty, tr - dark brown, stiff, n	ace sand, trace gravel noist, high plasticity					0.50	•		
1.00	233.77		- tan		1				1.00			
1.50	233.27		17-27 m CLAY - silty						1.50			
2.00	232.77	T	- brown - firm to stiff moist						2.00			
2.50	232.27	1	- high plasticity 2.7 - 3.0 m SILT - tan, loose, w	et					2.50			
3.00	231.77	1	3.0 - 8.5 m CLAY - silty - brown						3.00			
3.50	231.27		- stiff, moist, high pl	asticity					3.50			
4.00	230.77	K						1.	4.00			
4.50	230.27		- trace sand, trace g	gravel, grey below 4.6 m		T) / -	102	k Da	4.50			
5.00	229.77	M				PP =	78	kPa kPa	5.00			
5.50	229.27				25				5.50			
6.50	220.11	1							6.50			
7.00	227.77		- some till inclusion	s, wet, firm below 6.7 m	-	TV =	33	kPa	7.00		•	
7.50	227.27	N						. 1	7.50			
8.00	226.77	1							8.00	~		
8.50	226.27	1	8.5 - 12.2 m SILT (Till) - some sa	and					8.50			
9.00	225.77	N	- trace gravel, trace - light grey	cobbles					9.00	1		
9.50	225.27		- loose, wet						9.50			
10.00	224.77		- dense, dry below	10.0 m					10.00			
10.50	224.27	No.						5	10.50			
11.00	223.77	172							11.00			
11.50	223.27	P							11.50			
12.00	222.77	FT	12.2 m END OF TEST HOL	E AT 12.2 m IN SILT TILL					12.00			
12.50	222.27		Notes: 1. Squeezing below 2. Seepage below 8 3. Standpipe piezor installed to 9.4 m. 4. Water level meas on May 10, 2012 ar 5. Test hole backfill chips to 5.8 m and Piezometer protector	7.0 m in clay layer. 8.5 m in silt till layer. meter with Casagrande tip sured at 6.44 m below ground surface nd 8.46 m on June 12, 2012. led with sand to 7.0 m, bentonite auger cuttings to ground surface. ed with a flushmount cover.					12.50			
5. – ÷.								-				e e contra
												1.00

			DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEERS	PI	113324	#	TEST HOLE NO. 12-12
	PRO	JECT:	Ferry Road LDS		113324	Т	LOGGED BY: RB
	LOCA	TION:	Rutland St. at Bruce Ave.			RE	EVIEWED BY: AOD
C			Paddock Drilling Ltd. Acker Soil Septor 125 mm SSA			DBIL	DRILL DATE: April 20, 2012
UEPTH (m)	ELEVATION (m)	SOIL SYMBOL	SOIL DESCRIPTION	QU TV PP	INED S IRENGT Su UNCON COMPR TORVAN POCKE	FINED ESSIOI NE FPEN.	Test Results
2.00	000 70	NAME AND ADDRESS		Y	UNIT W	EIGHT	0.0 10.0 20.0 30.0 40.0 50.0 60.0 70
00.00	233.79	Aad	0 - 0.051 m ASPHALI 0 051 - 0 14 m CONCRETE	4.			0.00
0.50	233.29	ХX	0.14 - 0.76 m CLAY (Fill) - silty, trace sand, trace gravel	1			0.50
		$\langle X \rangle$	- dark brown to black, stiff, moist, high plasticity	and a			
.00	232.79		0.76 - 1.5 m SILT				1.00
.50	232.29		1.5 - 9.8 m CLAY - silty	Qu =	83	kPa	1.50
1		d T	- brown, mottled brown and grey below 2.4 m	TV =	106	kPa	
2.00	231.79		- very stiff, stiff below 2.1 m	PP =	191	kPa kN/mi	3 2.00
.50	231.29		- moist, high plasticity	¥ -	20.8	KIN/III	2.50
.00	230.79						3.00
50	230 29			²			3.50
	200.20			TV =	54	kPa	
.00	229.79			PP =	37	kPa	4.00
50	220.20			1. · · ·			4.50
	229.29						4.50
00	228.79			1			5.00
_	000.00	XI	- firm, trace sand, trace gravel below 5.2 m	TV =	29	kPa	이 같은 물건 같은 것이 있는 것을 물었다.
50	228.29			PP =	25	кРа	5.50
.00	227.79						6.00
.50	227.29			T (-	25	kDe.	6.50
00	226.79			PP =	35 20	кРа kРа	7.00
					20	ni u	
50	226.29	N					7.50
00	225 70		- soft below 7.6 m				8.00
	220.75			TV =	20	kPa	0.00
.50	225.29						8.50
00	224 70						
.00	224.79			1			9.00
50	224.29			1			9.50
00	222 70	in the	9.8 - 12.2 m SILT (Till) - some sand, trace gravel				
00	223.79		- lignt grey - loose, wet	1.5.26			10.00
50	223.29	121					10.50
		X		No soil re	ecovery b	below	
00	222.79	1. 1	- some cobbles below 11.3 m	10.7 m			11.00
50	222.29	AP.					11.50
		1.1.					이 영상에 문제되었다. 이 것을 많이 많이 했다.
00	221.79	41					12.00
50	221.29		Notes: 1. Squeezing below 5.2 m in clay layer. 2. Seepage below 7.6 m from clay layer.				12.50
			Water level at 4.9 m 5 minutes after drilling. 3. No soil recovery below 10.7 m. 4. Test hole backfilled with auger cuttings, capped with concrete core and cold patch.				

				PF	OJECT #	¥		TEST H	HOLE NO.
	DRO	IECT.	Form Road LDS		110024		OGGED BY:	RB	2 10
	LOCA	TION	St. James Collegiate			RE	IEWED BY:	AOD	
CC	ONTRAC	TOR:	Paddock Drilling Ltd.			D	RILL DATE:	April 30, 2012	
	MET	HOD:	Acker MP8 - 125 mm SSA			DRILL	DEPTH (m):	10.7	
DEPTH (m)	ELEVATION (m)	SOIL SYMBOL	SOIL DESCRIPTION	UNDR/ ST QU TV PP	AINED SH RENGTH Su UNCONF COMPRE TORVAN POCKET	HEAR H FINED ESSION IE		Test Res	ults ture Content (%)
				V		IGHT	0.0 1	0.0 20.0 20	0 400 500 600 700
0.00	222.91	()	0.03 m CLAY (Topsoil) - silty trace sand	8			0.00 1	0.0 20.0 30.	.0 40.0 50.0 60.0 70.0
0.00	202.01	32	- black, stiff, moist, high plasticity				-	~	
0.50	232.31	TT	0.3 - 1.2 m SILT - some sand]			0.50		
			- brown, loose, moist						
1.00	231.81	Ú	- clayey below 0.6 m	-			1.00	× ×	
1 50	001 01	1	1.2 - 10.7 m CLAY - slity				1.50		
1.50	231.31	X	- firm, moist, high plasiticity						
2.00	230.81	N	- trace silt inclusions				2.00		
		11	- trace gypsum inclusions	PP =	37	kPa			•
2.50	230.31	N					2.50		
0.00	000.01	X	grov below 3.0 m	0=	28	kPa	3.00		
3.00	229.81		- grey below 3.0 m	TV =	20 56	kPa	3.00		
3 50	229 31			PP =	89	kPa	3.50		
5.00				γ =	16.9	kN/m ³			
4.00	228.81						4.00		
							4.50		
4.50	228.31	1r					4.50		
5.00	227.81	X					5.00		
0.00	227.01			TV =	37	kPa	~		
5.50	227.31			PP =	25	kPa	5.50		
							6.00		
6.00	226.81						6.00		
6 50	226 31	X					6.50		
0.50	220.51	N		TV =	26	kPa			
7.00	225.81	. \					7.00		
		NI							
7.50	225.31	N	turne till inclusioner trace conditioner group				7.50		************
0.00	224.91		- trace till inclusions, trace sand, trace gravel				8.00		
0.00	224.01	\backslash	below 7.0 m	TV =	25	kPa			
8.50	224.31						8.50		
		IN					-		
9.00	223.81	N	- wet below 9.0 m				9.00		
0.50	222 21	\square					9.50		
9.50	223.31								
10.00	222.81	1					10.00		
10.50	222.31			-			10.50		
11.00	221 04		10.7 m END OF LEST HOLE AT 10.7 m IN CLAY Notes:				11.00		
11.00	221.01		1. Squeezing below 6.7 m in clay layer.						
		1	2. Test hole backfilled with auger cuttings.						
		1					L		
		1							
				1					
				1					
				1					
				1					
				1					
				1					
				1					
1	1			1					
1	1								
	1								
1									
	1	1							

.

APPENDIX C

Glacial Till and Bedrock Core Sample Photographs (Figures C1 to C13) & Bedrock Core Sample Summary (Table C1)

C562) Core Depth: 25 – 30 ft (7.6 – 9.1 m) – 8% recovery C564) Core Depth: 30.8 – 35 ft (9.3 – 10.7 m) – 45% recovery C566) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) – 33% recovery

DYRE CONSU	GROV ROI	BINSON INC. INICAL ENGINEERS			Ferry Road & Riverbend CSR – Rutland Trunk Sewe Glacial Till Core Photograph – Test Hole 19-166
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NIS	AA	GR	143691.7	November 2019	

er

C556) Core Depth: 25 – 30 ft (7.6 – 9.1 m) – 18% recovery C558) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) – 33% recovery C560) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) – 57% recovery

DYRE CONSU	GROV RO	BINSON INC. INICAL ENGINEERS			Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 19-167
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NTS	AA	GR	143691.7	November 2019	

			Sample submitted fo	or CAI and petrographic analy	rsis		
				3)			
			C550) Cor C552) Cor C554) Cor	e Depth: 25 – 30 ft (7.6 – e Depth: 31.5 – 35 ft (9.5 e Depth: 36.5 – 40 ft (11.1	9.1 m) - 30% recovery incl – 10.7 m) – 28% recovery L – 12.2 m) – 48% recovery	uding granite cobble	
DYRE	GROV RO JLTING GEOTEC	BINSON INC	•		Ferry Roa Glacial	ad & Riverbend CSR I Till Core Photograp	– Rutland Trunk Sewe h – Test Hole 19-168
SCALE: NTS	MADE BY: AA	CHKD BY: GR	PROJECT NO. 143691.7	DATE: November 2019			

e 19		4 31.5 - 3 ANT Aug 20, 20 D 10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	C544) Core Depth C546) Core Depth	36.5 7 40 36.5 7 40 37.5 7 100 37.5 7 100 3	recovery 2% recovery	
DYRE	GROV RO	BINSON INC.	C548) Core Deptn	: 36.5 – 40 ft (11.1 – 12.2 m) – 4	Ferry Road & Riverbend CSR – Rutlan	d Trunk Sewer
CONSL				DATE	Glacial Till Core Photograph – Test	Hole 19-169
NTS	AA	GR	143691.7	November 2019		

C538) Core Depth: 23 – 30 ft (7.0 – 9.1 m) - 20% recovery including limestone cobble / boulder C540) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - No sample recovery C542) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) - No sample recovery

	GROV ROI	BINSON INC. INICAL ENGINEERS			Ferry Road & Riverbend CSR – Rutland Trunk Sewe Glacial Till Core Photograph – Test Hole 19-170
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NTS	АА	GR	143691.7	November 2019	

er

C532) Core Depth: 26 – 30 ft (7.9 – 9.1 m) - 25% recovery C534) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - 24% recovery C536) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) - 40% recovery

DYRI	EGROV RO ULTING GEOTEC	BINSON INC. HNICAL ENGINEERS			Ferry Road & Riverbend CSR – Rutland Trunk Sewe Glacial Till Core Photograph – Test Hole 19-171
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NTS	AA	GR	143691.7	November 2019	

r

1 210-30 C520 V	C328 31'6" = 35'0"	7 36.6 7 40
TH 19-172 1		
TH19-172 8/19/19 Aug 19,2019 Ruth	C526) Core Depth: 26 - 30 ft (7.9 - 9.1 m) - 16% recovery	
	C528) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - 76% recovery include C530) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) - 23% recovery	ding limestone cobble / boulder
DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEERS	Ferry Road 8 Glacial Till	& Riverbend CSR – Rutland Trunk Sewei Core Photograph – Test Hole 19-172

					Giacial Till Core Photograph – Test Hole 19-172
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NTS	AA	GR	143691.7	November 2019	

r

C518) Core Depth: 23 – 30 ft (7.0 – 9.1 m) - 31% recovery including limestone boulder
C520) Core Depth: 31.5 – 35 ft (9.5 – 10.7 m) - 24% recovery
C522) Core Depth: 36.5 – 40 ft (11.1 – 12.2 m) - 57% recovery including limestone & granite cobble
C524) Core Depth: 41.3 – 43.5 ft (12.6 – 13.2 m) - 76% recovery including limestone cobble
C524) Core Depth: 43.5 – 46 ft (13.2 – 14.0m) - bedrock % Recovered = 100, RQD = 87%
C525) Core Depth: 46 – 51 ft (14.0 – 15.5 m) - bedrock % Recovered = 100, RQD = 87%

DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEERS					Ferry Road & Riverbend CSR – Rutland Trunk Sewe Bedrock Core Photograph – Test Hole 19-173	
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:		
NTS	AA	GR	143691.7	December 2020		
			Sample submitted for CAI,	UCS and petrographic analysis		
---------------	---------------------------------	--	---	--	---	--
L Rutia	20-244	Dec 11/2020	C8 23-26	4C10 27.5 - 30 4	C12 31.5 -	35
		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	м е Ш т е и 34 55 57 3 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		RUTLAND TH 20-244	CALL OF THE REPORT OF THE REPO
			C8) Core Depth C10) Core Dept C12) Core Dept	: 23 – 26 ft (7.0 – 7.9 m) - 60% ı h: 27.5 – 30 ft (8.4 – 9.1 m) - 20 h: 31.5 – 35 ft (9.5 – 10.7 m) - 6	recovery including granite cobble 0% recovery 52% recovery including limestone cobble	
DYRE	GROV RC JLTING GEOTEC	DBINSON INC. CHNICAL ENGINEERS			Ferry Road & Riverbend CSR – R Glacial Till Core Photograph –	utland Trunk Sewe
SCALE: NTS	MADE BY: AA	CHKD BY: GR	PROJECT NO. 143691.7	DATE: December 2020		

er

C22) Core Depth: 21 – 25 ft (6.4 – 7.6 m) - 52% recovery including limestone & granite cobbles C24) Core Depth: 26.5 – 30 ft (8.1 – 9.1 m) - 38% recovery C26) Core Depth: 31.5 – 35 ft (9.6 – 10.7 m) - 31% recovery

DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEERS					Ferry Road & Riverbend CSR – Rutland Trunk Sewe Glacial Till Core Photograph – Test Hole 20-245
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NTS	AA	GR	143691.7	December 2020	

r

C35) Core Depth:	21.5 – 25 ft (6.5 – 7.6 m) - 43% recovery
C37) Core Depth:	26.5 – 30 ft (8.1 – 9.1 m) - 12% recovery
C39) Core Depth:	31.5 – 35 ft (9.6 – 10.7 m) - 24% recovery

DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEERS					Ferry Road & Riverbend CSR – Rutland Trunk Sewei Glacial Till Core Photograph – Test Hole 20-246
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NTS	AA	GR	143691.7	December 2020	

C47) Core Depth: 21.5 – 25 ft (6.5 – 7.6 m) - 15% recovery C49) Core Depth: 26.5 – 30 ft (8.1 – 9.1 m) - 33% recovery C51) Core Depth: 30.3 – 35 ft (9.1 – 10.7 m) - 49% recovery including limestone

DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEERS					Ferry Road & Riverbend CSR – Rutland Trunk Sewer Glacial Till Core Photograph – Test Hole 20-247
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NTS	AA	GR	143691.7	December 2020	

A C 58 21.5- 7		COO 25-30		* C62	3
C 64 36.5-	40	TH 2	G-248		
	A A A A A A A A A A A A A A A A A A A				Č.
Bedrock Contact 15.2 m / 50'	C BUIL	C70 50'	-7 55.0.	RUTLAND I	436

C58) Core Depth: 21.5 – 25 ft (6.6 – 7.6 m) - 38% recovery	
C60) Core Depth: 25 – 30 ft (7.6 – 9.1 m) - 42% recovery	
C62) Core Depth: 31.5 – 35 ft (9.6 – 10.7 m) - 0% recovery	
C64) Core Depth: 36.5 – 40 ft (11.2 – 12.2 m) - 69% recovery	
C66) Core Depth: 41.5 – 45 ft (12.7 – 13.7 m) - 33% recovery	
C68) Core Depth: 45.3 – 50 ft (13.8 – 15.2 m) - 58% recovery	
C70) Core Depth: 50 – 55 ft (15.2 – 16.8 m) – bedrock, 100 % recovery, RQD = 68	%

DYREGROV ROBINSON INC. CONSULTING GEOTECHNICAL ENGINEERS				G	Ferry Road & Riverbend CSR – Rutland Trunk Sewe Glacial Till & Bedrock Core Photograph – Test Hole 20-
SCALE:	MADE BY:	CHKD BY:	PROJECT NO.	DATE:	
NTS	AA	GR	143691.7	December 2020	

er -248

		Coring Details					Core Sample		%Recovery	RQD
Test Hole	Sample #	Dept	h (m)	Dept	h (ft)	Length	Lrecovered	L > 4"		
		from	to	from	to	(inches)	(inches)	(inches)		
10-172	C524	13.26	14.02	43.50	46.00	30	28	9	93%	30%
19-175	C525	14.02	15.54	46.00	51.00	60	60	52	100%	87%
20-248	C70	15.24	16.76	50.00	55.00	60	60	41	100%	68%
20-248										

Table C1) Bedrock Core Sample Summary

APPENDIX D

Laboratory Testing Results

Tables D1 to D4 Moisture Contents Strength and Unit Weight Testing (Shelby Tube Samples) Atterberg Limits Particle Size Distribution Soil Chemistry (Bureau Veritas Laboratories) Swell Testing (Wood PLC)

Table D1) Summary of Plastic Limits, Liq	iquid Limits, Plasticity Indices and L	iquidity Indices (ASTM D4318)
--	--	-------------------------------

Test Hole	Sar	nple	Soil Type	In-Situ	Plastic	Liquid	Plasticity	Liquidity	Classification
				Moisture	Limit	Limit	Index	Index	(see plasticity chart)
	No.	Depth (m)		(%)	(%)	(%)			
19-148	T296	3.4	Clay (Alluvium)	33	23	40	17	0.6	CI
19-149	G289	7.3	Clay (Alluvium)	33	16	34	18	0.9	Cl
19-150	G277	4.6	Clay (Alluvium)	22	15	37	22	0.3	Cl
19-151	T269	5.0	Clay (Alluvium)	33	20	46	26	0.5	CI
19-151	G272	8.8	Clay (Alluvium)	34	20	33	13	1.1	Cl
19-152	G240	4.3	Clay (Glaciolacustrine)	53	32	91	59	0.4	СН
19-156	T326	6.5	Clay (Glaciolacustrine)	47	24	79	55	0.4	СН
19-157	T337	9.5	Clay (Glaciolacustrine)	53	18	55	37	0.9	СН
19-162	T394	7.9	Clay (Glaciolacustrine)	46	23	70	47	0.5	СН
19-166	G439	4.3	Clay (Glaciolacustrine)	47	29	78	49	0.4	СН
19-173	G492	2.3	Clay (Glaciolacustrine)	43	26	78	52	0.3	СН
19-240	G427	1.2	Silt	22	17	22	5	1.0	ML
20-245	G18	4.6	Silty Clay (Glaciolacustrine)	34	14	48	34	0.6	CI
20-248	T55	3.4	Silty Clay (Glaciolacustrine)	23	13	43	30	0.3	Cl

Refer to Lab Testing Reports in Appendix D

City of Winnipeg - Ferry Road Riverbend CSR - Rutland Trunk PLASTICITY CHART

Test Hole	st Hole Sample		Soil Type	Clav	Silt	Sand	Classification
restricte	Gui	iipie	oon rype	Oldy	One	Gana	(see plasticity chart)
	No.	Depth (m)		(%)	(%)	(%)	
19-148	T296	3.4	Clay (Alluvium)	46.1	52.7	1.2	CI
19-148	G302	8.5	Glacial Till	33.7	60.2	5.8	n/a
19-149	G289	7.3	Clay (Alluvium)	44.2	50.1	5.6	CI
19-150	G277	4.6	Clay (Alluvium)	53.3	40.3	6.4	Cl
19-151	T269	5.0	Clay (Alluvium)	50.0	49.3	0.7	CI
19-151	G272	8.8	Clay (Alluvium)	47.7	50.0	2.3	Cl
19-152	G240	4.3	Clay (Glaciolacustrine)	99.9	0.0	0.1	СН
19-156	T326	6.5	Clay (Glaciolacustrine)	92.1	7.8	0.1	СН
19-157	T337	9.5	Clay (Glaciolacustrine)	51.9	36.9	11.2	СН
19-161	G386	9.8	Glacial Till	44.7	50.9	4.1	n/a
19-162	T394	7.9	Clay (Glaciolacustrine)	89.8	9.5	0.6	СН
19-166	G439	4.3	Clay (Glaciolacustrine)	90.9	8.8	0.3	СН
19-166	S443	9.3	Glacial Till	45.5	49.1	5.0	n/a
19-173	G492	2.3	Clay (Glaciolacustrine)	93.8	5.8	0.4	СН
19-173	S496	6.3	Glacial Till	39.5	55.3	4.7	n/a
20-244	G7	6.2	Glacial Till	43.1	53.5	3.2	n/a
20-245	G20	6.2	Glacial Till	49.6	46.9	3.3	n/a
20-246	S36	7.8	Glacial Till	32.8	59.0	7.6	n/a
20-247	S46	6.3	Glacial Till	44.0	49.6	6.0	n/a
20-248	S56	4.8	Glacial Till	31.8	59.5	7.8	n/a

Table D2) Summary of Particle Size Distribution Tests (ASTM D422)

Refer to Lab Testing Report in Appendix D

Test Hole	Soil S	ample	Soil Type	Calculated Sulphate (SO4)	Soluble Sulphate (SO4)	Soluble Chloride (CL)	Soluble Conductivity	Resistivity (calculated)	рН
	No.	Depth (m)		%	mg/L	mg/L	dS/m	ohm-m	
19-149	G286	2.7	Clay (Alluvium)	0.017	300	30	1.2	8.7	7.55
19-151	G267	2.2	Silt (Alluvium)	0.0010	21	18	0.29	35	7.81
19-153	G248	4.1	Clay (Glaciolacustrine)	0.34	3200	490	6.1	1.6	7.59
19-161	G383	5.7	Clay (Glaciolacustrine)	0.20	2100	220	3.9	2.6	7.68
19-167	G456	5.7	Clay (Glaciolacustrine)	0.13	1500	17	2.6	3.8	7.81
19-172	G486	6.6	Glacial Till	0.064	1500	850	5.3	1.9	7.83
20-244	T5	4.9	Clay (Glaciolacustrine)	0.11	1500	470	3.7	2.7	7.89
20-248	S57	6.4	Glacial Till	0.006	280	150	1.2	8.5	8.29

Table D3) Summary of Soil Chemistry Test Results

Refer to Lab Testing Reports in Appendix D

Test Hole	Sample		Sample Soil Type		Est. Swell Pressure
	No.	Depth (m)		%	kPa
19-156	T326	6.4	Clay (Glaciolacustrine)	2.2	68
19-162	T394	7.9	Clay (Glaciolacustrine)	1.6	40
19-173	T493	3.4	Clay (Glaciolacustrine)	1.3	41

Table D4) Summary of Swell Testing (ASTM D4546-14 Method A)

Refer to Lab Testing Report in Appendix D

SOIL SAMPLE MOISTURE CONTENTS

Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-147	G304	0.7	227.93	25.7
19-147	G305	1.4	227.17	19.0
19-147	G306	2.7	225.95	26.4
19-147	G307	4.2	224.43	26.4
19-147	G308	5.7	222.91	19.7
19-147	S309	6.3	222.30	12.5
		~ -		05.0
19-148	G293	0.7	229.88	25.3
19-148	G294	1.4	229.12	19.8
19-148	G295 T206	2.2	228.30	24.0
19-140	C207	3.4 4.2	221.22	33.3 21 7
19-140	G297	4.Z	220.30	27.0
19-140	G200	6.6	224.00	12.1
19-148	G300	7.2	223.34	
19-148	G301	7.8	220.00	11.4
19-148	G302	8.5	222.72	9.6
19-148	S303	9.4	221.20	15.8
		<u> </u>		
19-149	G284	0.7	230.32	23.0
19-149	G285	1.4	229.56	26.3
19-149	G286	2.7	228.34	20.7
19-149	T287A	4.7	226.32	33.0
19-149	T287B	4.9	226.10	40.2
19-149	G288	5.7	225.30	38.6
19-149	G289	7.2	223.77	32.9
19-149	G290	8.8	222.25	40.6
19-149	G291	9.4	221.64	11.4
19-150	G274	0.7	231.21	25.3
19-150	G275	1.1	230.76	12.3
19-150	G276	2.7	229.23	28.2
19-150	G277	4.5	227.40	22.2
19-150	G278	6.0	225.88	31.5
19-150	G279	7.2	224.66	28.2
19-150	G280	8.2	223.75	37.6
19-150	G281	8.5	223.44	14.6
19-150	G282	10.0	221.92	32.8
19-150	G283	10.3	221.61	16.3
	0005	~ -		
19-151	G265	0.7	230.35	17.5
19-151	G266	1.4	229.59	25.1
19-151	G207	2.2	228.83	20.0 26.1
19-151	G200 T260A	3.0	220.07	20.1
19-151	T209A	4.7	220.30	32.0
10 151	C270	4.9 5.7	220.13	31.6
19-151	G270	5.7 7.2	223.33	30./
10 151	G271	<u> </u>	223.00	33.4
19-151	G272	10.3	222.20	15.6
	0210	10.0	220.70	10.0
19-152	G237	07	232.00	22.6
19-152	G238	1 4	231 24	34.6
19-152	G239	2.7	230.02	45.6
19-152	G240	4.2	228.50	53.3
19-152	T241	6.4	226.29	48.8
19-152	G242	7.2	225.45	58.9
19-152	G243	8.8	223.93	58.7
19-152	G244	10.3	222.40	51.9
19-153	G245	0.7	231.86	24.5
19-153	G246	1.4	231.10	33.5
19-153	G247	2.7	229.88	45.1
19-153	G248	4.2	228.36	49.5
19-153	G249	5.7	226.84	47.8
19-153	G250	1.2	225.31	51.8
19-153	1251	9.4	223.10	60.4
19-153	G252	10.3	222.26	51./ 15.6
19-103	6203	ι II.Ծ	ZZU.14	10.0
10_15/	G254	<u>0 1</u>	222 56	
10-154	G255	0.1 0.2	232.30	20.7
10-104	G255	1 /	231.00	22.0
19-154	G257	07	201.19	<u>4</u> 9 7
19-154	G258	<u>∠.</u> 1 <u></u> <u></u>	229.91	49.0
19-154	G259	<u>-</u> <u>5</u> 7	220.40	48.4
19-154	G260	7.2	225.40	51.4
19-154	G261	8.8	223.88	50.6
19-154	G262	10.3	222.35	55.0
19-154	G263	11.8	220.83	39.2
19-154	G264	12.7	219.91	21.6

Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-155	G311	0.2	233.40	38.1
19-155	G312	0.8	232.79	25.5
19-155	G313	1.3	232.33	31.9
19-155	T314	3.4	230.28	47.1
19-155	G315	4.2	229.44	51.0
19-155	G316	5.7	227.92	52.2
19-155	G317	7.2	226.39	50.0
19-155	G318	8.8	224.87	51.9
19-155	G319	10.3	223.34	31.5
19-155	G320	12.1	221.51	18.0
19-156	G321	0.2	233.47	28.0
19-156	G322	1.0	232.71	11.2
19-156	G323	2.4	231.34	44.1
19-156	G324	3.6	230.12	48.2
19-156	G325	4.5	229.20	46.1
19-156	T326	6.4	227.30	47.0
19-156	G327	7.2	226.46	48.0
19-156	G328	8.8	224.94	48.9
19-156	G329	10.3	223.41	42.0
19-156	G330	11.8	221.89	19.7
19-157	G331	0.5	233.26	21.1
19-157	G332	1.3	232.49	15.9
19-157	G333	2.7	231.12	28.5
19-157	G334	4.2	229.60	48.2
19-157	G335	5.7	228.08	45.6
19-157	G336	7.2	226.55	47.3
19-157	T337	9.4	224.34	52.7
19-157	S338	10.9	222.89	8.2
19-157	G339	11.4	222.44	29.1
19-157	G340	12.1	221.67	45.5
19-158	G341	0.7	233.04	25.5
19-158	G342	1.4	232.28	25.8
19-158	G343	2.7	231.06	48.2
19-158	T344	4.9	228.85	51.8
19-158	G345	5.7	228.02	44.3
19-158	G346	7.2	226.49	54.0
19-158	G347	8.8	224.97	52.8
19-158	G348	10.3	223.44	37.2
19-158	G349	11.8	221.92	40.7
19-159	G350	0.7	233.13	29.8
19-159	G351	1.4	232.37	28.1
19-159	G352	2.7	231.15	44.9
19-159	G353	4.2	229.63	44.4
19-159	G354	5.7	228.11	48.8
19-159	T355	7.9	225.90	42.7
19-159	G356	8.8	225.06	56.7
19-159	G357	10.3	223.53	23.4
19-159	G358	11.8	222.01	26.8
19-160	G359	0.2	233.70	29.8
19-160	G360	0.5	233.40	24.9
19-160	G361	1.4	232.48	30.0
19-160	G362	2.7	231.26	48.4
19-160	G363	4.2	229.74	50.8
19-160	G364	5.7	228.22	48.6
19-160	G365	7.2	226.69	44.4
19-160	G366	8.8	225.17	52.4
19-160	⊺367	11.0	222.96	12.4
40.404			000.0-	04.0
19-161	63/8	0.2	233.97	21.6
19-161	G3/9	1.1	233.06	12.7
19-161	G380	1.8	232.45	38.6
19-161	1381	3.4	230.85	42.2
19-161	6382	4.2	230.01	42.5
19-101	6383	5./	228.49	41.3
19-101	6384	1.2	226.96	48.8
19-101	6385	8.8	225.44	48.5
19-101	6380	9.7	224.52	18.0
10 160	C300	0.0	222 EV	15.0
10 160	C300	U.Ö 1 4	∠	10.0 //1_1
10 160	C309	1.4	202.09	41.1 11 5
10 160	C201	ו.0 דר	232.59	וו.ס סב ס
10-102	C303	<u> </u>	231.07	20.0 /6.6
10-102	C303 0295	4.Z	200.10	40.0 16.2
10-102	T301	7.0	220.03	40.2 16 2
10-102	G305	1.3 Q Q	220.42	+0.2 52.6
10-102	5306	10.0	220.00	0 2 0 2
10-102	G307	10.1	224.21	12 Q
10-102		10.3	224.00	12.0
				ı I

SOIL SAMPLE MOISTURE CONTENTS

Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-163	G398	0.5	234.09	23.0
19-163	G399	1.1	233.48	11.6
19-163	G400	2.7	231.95	32.9
19-163	G401	4.2	230.43	43.9
19-163	T402	6.4	228.22	40.6
19-163	G403	7.2	227.38	49.1
19-163	G404	8.8	225.86	50.7
19-163	S405	10.9	223.72	9.7
19-163	G406	11.5	223.11	17.1
19-164	G407	0.5	234.11	26.6
19-164	G408	1.4	233.19	14.7
19-164	G409	2.7	231.97	46.4
19-164	G410	4.2	230.45	50.1
19-164	G411	5.7	228.93	49.9
19-164	T412	7.9	226.72	48.5
19-164	G413	8.8	225.88	47.1
19-164	G414	9.4	225.27	19.2
19-164	S415	10.9	223.74	9.7
19-164	G416	11.5	223.13	9.7
	~			
19-165	G417	0.5	234.14	21.7
19-165	G418	1.3	233.37	13.7
19-165	G419	2.7	232.00	46.3
19-165	G420	4.2	230.48	47.0
19-165	T421	6.4	228.27	49.4
19-165	G422	7.2	227.43	42.4
19-165	G423	8.8	225.91	44.5
19-165	S424	10.6	224.08	9.0
19-165	S425	12.3	222.40	12.2
19-166	G436	0.7	234.25	22.9
19-166	G437	1.4	233.49	21.9
19-166	G438	2.7	232.27	42.1
19-166	G439	4.2	230.75	47.3
19-166	T440	6.4	228.54	54.2
19-166	G441	7.2	227.70	47.9
19-166	G442	8.5	226.48	10.0
19-166	S443	9.4	225.57	8.7
19-166	S563	9.3	225.66	5.1
19-166	S565	10.9	224.04	9.0
19-166	S567	11.7	223.28	9.1
19-167	G452	0.5	234.06	19.7
19-167	G453	1.4	233.14	25.5
19-167	G454	2.7	231.92	41.5
19-167	G455	4.2	230.40	43.9
19-167	G456	5.7	228.88	47.7
19-167	T457	7.9	226.67	10.4
19-167	S458	8.3	226.28	8.5
19-167	S557	9.4	225.22	9.4
19-167	S559	10.9	223.69	8.6
19-167	S561	12.4	222.17	9.3
19-168	G444	0.5	234.44	22.0
19-168	G445	1.4	233.52	12.6
19-168	G446	2.4	232.61	41.6
19-168	T447	3.4	231.62	50.3
19-168	G448	4.2	230.78	51.3
19-168	G449	5.7	229.26	42.9
19-168	G450	6.9	228.04	24.3
19-168	S451	7.8	227.12	10.4
19-168	S551	9.4	225.60	8.5
19-168	S553	10.9	224.07	9.3
19-168	S555	12.4	222.55	9.1

Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-169	G459	0.5	234.39	30.0
19-169	G460	1.4	233.47	30.4
19-169	G461	2.7	232.25	46.7
19-169	T462	4.9	230.04	43.4
19-169	G463	5.7	229.21	59.6
19-169	S464	7.8	227.07	7.4
19-169	S545	9.4	225.55	8.4
19-169	S547	10.9	224.02	8.5
19-169	S549	12.4	222.50	9.7
10 170	C/65	0.7	22/ 21	26.3
19-170	G466	1 4	233 55	20.0
19-170	G467	27	232 33	44.3
19-170	G468	4 2	230.81	47.1
19-170	G469	5.7	229.29	54.0
19-170	G470	6.9	228.07	28.7
19-170	S471	7.8	227.15	6.8
19-170	S539	9.4	225.63	7.6
19-170	S541	10.9	224.10	10.1
19-170	S543	12.4	222.58	13.9
19-171	G472	0.7	234.30	26.6
19-171	G473	1.4	233.54	30.7
19-171	G474	2.7	232.32	48.5
19-171	T475	4.9	230.11	45.3
19-171	G476	5.7	229.28	51.6
19-171	G477	6.9	228.06	13.2
19-171	S478	7.8	227.14	7.4
19-171	G479	8.2	226.84	10.7
19-1/1	\$533	9.4	225.62	8.1
19-171	S535	10.9	224.09	8.4
19-171	5037	12.4	222.57	9.5
19-172	G481	0.7	23/1 37	25.0
19-172	G482	1 /	233.61	20.0
19-172	G483	27	232.01	42.1
19-172	G484	4.7	230.87	46.7
19-172	G485	57	229.35	45.7
19-172	G486	6.8	228.28	19.8
19-172	S487	7.8	227.29	7.2
19-172	G488	8.0	227.06	11.5
19-172	S527	9.4	225.69	8.7
19-172	S529	10.7	224.32	9.0
19-172	S531	12.4	222.64	8.6
19-173	G490	0.7	234.47	25.0
19-173	G491	1.4	233.71	28.0
19-173	G492	2.2	232.95	42.5
19-173	T493	3.4	231.81	42.4
19-173	G494	4.2	230.97	41.9
19-173	G495	5.1	230.05	18.9
19-1/3	5496	6.3	228.84	13.7
19-1/3	5497	1.5	227.62	8.0
19-1/3	0519 0504	9.4	225.79	9.7 10.2
10 172	3021 8522	10.9	224.20	1U.2 0.2
19-1/3	3523	12.4		¥.Z
19-230	G369	0.2	233.85	29.4
		0.∠	200.00	<i></i> .7

19-239	G370	1.1	232.94	21.7
19-239	G371	2.7	231.41	44.1
19-239	T372	4.9	229.20	47.5
19-239	G373	5.7	228.37	44.8
19-239	G374	7.2	226.84	47.8
19-239	G375	8.8	225.32	53.8
19-239	G376	10.0	224.10	15.1

SOIL SAMPLE MOISTURE CONTENTS

Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
19-240	G426	0.5	234.58	19.9
19-240	G427	1.1	233.97	21.8
19-240	G428	2.1	233.05	21.7
19-240	G429	3.3	231.83	49.6
19-240	T430	4.9	230.23	45.3
19-240	G431	5.7	229.40	53.4
19-240	G432	7.2	227.87	44.8
19-240	G433	8.5	226.65	26.9
19-240	S434	9.4	225.74	12.9
19-240	S435	10.9	224.21	11.4
19-240	G436	11.5	223.60	15.2
20-244	G1	0.4	234.84	27.3
20-244	G2	1.3	233.92	26.9
20-244	G3	1.9	233.32	34.4
20-244	G4	2.8	232.40	42.6
20-244	T5	4.9	230.34	34.2
20-244	G6	5.6	229.66	42.7
20-244	G7	6.2	229.05	13.4
20-244	C8	7.5	227.75	n/a
20-244	S9	8.2	227.07	8.0
20-244	C10	8.8	226.46	n/a
20-244	S11	9.4	225.85	7.9
20-244	C12	10.1	225.09	n/a
20-244	S13	10.9	224.32	9.1
20-245	G14	0.4	234.92	28.8
20-245	G15	1.6	233.70	35.1
20-245	G16	2.2	233.09	36.3
20-245	G17	2.8	232.48	39.0
20-245	G18	4.6	230.65	34.1
20-245	G19	5.6	229.74	40.1
20-245	G20	6.2	229.13	16.8
20-245	G21	6.3	228.98	19.9
20-245	C22	7.0	228.29	n/a
20-245	S23	7.8	227.45	9.1
20-245	C24	8.6	226.69	n/a
20-245	S25	9.4	225.93	9.1
20-245	C26	10.1	225.17	n/a
20-245	S27	10.9	224.40	8.7

Test Hole	Sample	Depth	Elev.	Moisture Content
No.	No.	(m)	(m)	(%)
20-246	G28	1.0	234.44	29.0
20-246	G29	1.9	233.53	38.0
20-246	G30	2.8	232.61	39.1
20-246	T31	3.4	232.08	40.6
20-246	G32	4.6	230.78	26.9
20-246	G33	5.6	229.87	7.8
20-246	S34	6.3	229.11	7.8
20-246	C35	7.1	228.34	n/a
20-246	S36	7.8	227.58	8.9
20-246	C37	8.6	226.82	n/a
20-246	S38	9.4	226.06	4.5
20-246	C39	10.1	225.30	n/a
20-246	S40	10.9	224 53	9.9
	0.10	10.0		0.0
20-247	G41	0.8	234.80	28.1
20-247	G42	1.6	234.04	32.7
20 247	G/3	2.8	237.04	20.2
20-247	G14	4.2	232.02	30.2
20-247	C45	4.J	231.30	1/ 1
20-247	<u> </u>	5.5	230.30	7.0
20-247	C47	0.3	229.32	1.9 p/o
20-247	C47	7.1	220.00	11/a
20-247	C40	1.0	227.79	9.0
20-247	C49 850	0.0	227.03	n/a
20-247	550	9.2	226.46	4.4
20-247	C51	9.9	225.70	n/a
20-247	552	10.9	224.74	n/a
				04.0
20-248	G53	0.7	235.34	31.0
20-248	154	1.8	234.20	29.3
20-248	155	3.4	232.68	23.4
20-248	S56	4.8	231.23	7.9
20-248	S57	6.3	229.71	3.1
20-248	C58	7.1	228.94	n/a
20-248	S59	7.6	228.41	n/a
20-248	C60	8.4	227.65	n/a
20-248	S61	9.4	226.66	8.0
20-248	C62	10.1	225.90	n/a
20-248	S63	10.9	225.13	9.6
20-248	C64	11.7	224.37	6.3
20-248	S65	12.4	223.61	7.7
20-248	C66	13.2	222.85	n/a
20-248	S67	13.8	222.28	8.3

UNCONFINED COMPRESSION TEST

PROJECT:	Contract 6 - Rutland	Trunk Sewer
PROJECT No.:	143691.7	

Tost Holo	10_1/2	Danth	10 12	foot
	13-140	<u>Deptn</u>	T200	ieel
Mat - Taxa M/t	200.06 ~	Sample No.	1290	
VVel + Tare VVI.	290.00 y	Diamatar		mm
Diy + Tale Wt.	225.88 y	Diameter		111111 mm ²
	51.00 g	Alea Woight		 a
	04.90 y	vveigni		y v
Dry vvt.	194.88 g	Strain		%
Moisture Cont.	33.3 %	Avg. Area		mm ²
Wet Density	#DIV/0! ID/IT	#DIV/0! /	kIN/m ^s	4-6
Pocket Pen: Rdg	1.00 tsf	Torvane: Rdg	0.33	tst
Su	1.00 ksf	Std vane Su	0.68	ksf
Su	47.9 kPa	Su	32.4	kPa
Qu: Displacement	n/a mm			
Load Cell	kN			
Su	kPa			
Su	ksf			
Tost Holo	10 1/0	Donth	15 15 9	foot
	13-143	Sample No	T287Δ	1001
Wet + Tare Wt	282 53 a	Length	TEOTA	mm
Drv + Tare Wt	220.30 g	Diameter		mm
Diy Flare Wt. Tare Wt	220.50 g	Διαπειεί		mm ²
	62.23 g	Woight		a
Dry Wt	02.25 y	Strain		9 %
Diy VVI.	100.79 y			70 mm²
Moisture Cont.	33.0 %	Avg. Area	1.1.1/3	mm²
wet Density		<i>T())///////////////////////////////////</i>	k NI/ms	
Dealest Dam. Dale	0.50.4.4		0.00	tof
Pocket Pen: Rdg	0.50 tsf	Torvane: Rdg	0.22	tsf
Pocket Pen: Rdg Su	0.50 tsf 0.50 ksf	Torvane: Rdg Std vane Su	0.22 0.45	tsf ksf
Pocket Pen: Rdg Su Su	0.50 tsf 0.50 ksf 23.9 <i>kPa</i>	Torvane: Rdg Std vane Su Su	0.22 0.45 21.6	tsf ksf kPa
Pocket Pen: Rdç Su Su Qu: Displacemer	0.50 tsf 0.50 ksf 23.9 <i>kPa</i> n/a mm	Torvane: Rdg Std vane Su Su	0.22 0.45 21.6	tsf ksf kPa
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell	0.50 tsf 0.50 ksf 23.9 <i>kPa</i> n/a mm kN	Torvane: Rdg Std vane Su Su	0.22 0.45 21.6	tsf ksf kPa
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su	0.50 tsf 0.50 ksf 23.9 <i>kPa</i> n/a mm kN <i>kPa</i>	Torvane: Rdg Std vane Su Su	0.22 0.45 21.6	tsf ksf kPa
ocket Pen: Rdg Su Su Uu: Displacemer Load Cell Su Su	0.50 tsf 0.50 ksf 23.9 <i>kPa</i> n/a mm kN <i>kPa</i> ksf	Torvane: Rdg Std vane Su Su	0.22 0.45 21.6	tsf ksf kPa
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su Test Hole	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151	Torvane: Rdg Std vane Su Su Depth	0.22 0.45 21.6	tsf ksf kPa
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su Test Hole	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151	Torvane: Rdg Std vane Su Su Depth Sample No.	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt.	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 α	Torvane: Rdg Std vane Su Su <u>Depth</u> Sample No. Length	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa feet
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt.	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 a	Torvane: Rdg Std vane Su Su <u>Depth</u> Sample No. Length Diameter	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa feet mm mm
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt. Tare Wt	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g	Torvane: Rdg Std vane Su Su <u>Su</u> <u>Depth</u> <u>Sample No.</u> Length Diameter Area	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa feet mm mm mm ²
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt Water	0.50 tsf 0.50 ksf 23.9 <i>kPa</i> n/a mm kN <i>kPa</i> ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g	Torvane: Rdg Std vane Su Su <u>Su</u> <u>Depth</u> <u>Sample No.</u> Length Diameter Area Weight	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa feet mm mm ² α
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su Test Hole Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Tare Wt. Wt. Water	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g	Torvane: Rdg Std vane Su Su <u>Depth</u> Sample No. Length Diameter Area Weight Strain	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa feet mm mm ² g
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt.	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 24.3 %	Torvane: Rdg Std vane Su Su Su <u>Su</u> <u>Su</u> <u>Su</u> <u>Su</u> <u>Su</u> <u>Su</u> <u></u>	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa feet mm mm ² g % mm ²
Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont.	0.50 tsf 0.50 ksf 23.9 <i>kPa</i> n/a mm kN <i>kPa</i> ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 %	Torvane: Rdg Std vane Su Su Su <u>Depth</u> Sample No. Length Diameter Area Weight Strain Avg. Area	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa feet mm mm ² g % mm ²
Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su Test Hole Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 % Ib/ft ³	Torvane: Rdg Std vane Su Su Su <u>Depth</u> Sample No. Length Diameter Area Weight Strain Avg. Area	0.22 0.45 21.6 15-15.8 T269A	tsf ksf kPa feet mm mm ² g % mm ² tsf
Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdç	0.50 tsf 0.50 ksf 23.9 <i>kPa</i> n/a mm kN <i>kPa</i> ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 % Ib/ft ³ 0.40 tsf 0.40 tsf	Torvane: Rdg Std vane Su Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area	0.22 0.45 21.6 15-15.8 T269A kN/m ³ 0.20	tsf ksf kPa feet mm mm ² g % mm ² tsf
Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdç Su	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 % lb/ft ³ 0.40 tsf 0.40 ksf 10.2 kp	Torvane: Rdg Std vane Su Su Su <u>Depth</u> Sample No. Length Diameter Area Weight Strain Avg. Area	0.22 0.45 21.6 15-15.8 T269A kN/m ³ 0.20 0.41	tsf kSf kPa feet mm mm ² g % mm ² tsf ksf kSf
Pocket Pen: Rdg Su Su Su Qu: Displacemer Load Cell Su Su Test Hole Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 % Ib/ft ³ 0.40 tsf 0.40 tsf 0.40 ksf 19.2 kPa	Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su Su Stample No. Length Diameter Area Weight Strain Avg. Area Uveight Strain Avg. Area	0.22 0.45 21.6 15-15.8 T269A kkN/m ³ 0.20 0.41 19.6	tsf kSf kPa feet mm mm² g % mm² tsf kSf kPa
Pocket Pen: Rdg Su Su Su Qu: Displacemer Load Cell Su Su Test Hole Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su	0.50 tsf 0.50 ksf 23.9 <i>kPa</i> n/a mm kN <i>kPa</i> ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 % Ib/ft ³ 0.40 tsf 0.40 tsf 0.40 tsf 19.2 <i>kPa</i> n/a mm	Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su Su Su Std vane Su Su Su Su	0.22 0.45 21.6 15-15.8 T269A k///m ³ 0.20 0.41 19.6	tsf ksf kPa feet mm mm² g % mm² tsf ksf kPa
Pocket Pen: Rdg Su Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 % 1b/ft ³ 0.40 tsf 0.40 ksf 19.2 kPa n/a mm kN	Torvane: Rdg Std vane Su Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area	0.22 0.45 21.6 15-15.8 T269A kN/m ³ 0.20 0.41 19.6	tsf kSf kPa feet mm mm² g % mm² tsf ksf kPa
Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su <u>Test Hole</u> Wet + Tare Wt. Dry + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Su	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 % Ib/ft ³ 0.40 tsf 0.40 tsf 0.40 tsf 19.2 kPa n/a mm kN kPa	Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su Su Stample No. Length Diameter Area Weight Strain Avg. Area Veight Strain Avg. Area	0.22 0.45 21.6 15-15.8 T269A k//m ³ 0.20 0.41 19.6	tsf kSf kPa feet mm mm² g % mm² tsf kSf kPa
et Pen: Rdg Su Su Su Displacemer Load Cell Su Su est Hole + Tare Wt. + Tare Wt. + Tare Wt. Tare Wt. Wt. Water Dry Wt. sture Cont. /et Density et Pen: Rdg Su Displacemer Load Cell Su	0.50 tsf 0.50 ksf 23.9 kPa n/a mm kN kPa ksf 19-151 229.69 g 178.97 g 31.13 g 50.72 g 147.84 g 34.3 % Ib/ft ³ 0.40 tsf 0.40 tsf 0.40 ksf 19.2 kPa n/a mm kN kPa	Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Stample No. Length Diameter Area Weight Strain Avg. Area Veight Strain Avg. Area	0.22 0.45 21.6 15-15.8 T269A k//m ³ 0.20 0.41 19.6	tsf kSf kPa feet mm mm g % mm tsf kSf kPa

UNCONFINED COMPRESSION TEST

PROJECT:	Contract 6 - Rutland	Trunk Sewer
PROJECT No.:	143691.7	

Test Hole	19-152	<u>Depth</u>	20-22	feet		Test Hole	19-153	<u>Depth</u>	30-32	feet
		Sample No.	T241	-				Sample No.	T251	
Wet + Tare Wt.	188.07 g	Length		mm		Wet + Tare Wt.	320.53 g	Length	175	mm
Dry + Tare Wt.	136.47 g	Diameter		mm		Dry + Tare Wt.	211.48 g	Diameter	72	mm
Tare Wt.	30.65 g	Area		mm²		Tare Wt.	30.84 g	Area	4072	mm²
Wt. Water	51.60 g	Weight		g		Wt. Water	109.05 g	Weight	1152.62	g
Dry Wt.	105.82 g	Strain		%		Dry Wt.	180.64 g	Strain	3.71	%
Moisture Cont.	48.8 %	Avg. Area		mm²		Moisture Cont.	60.4 %	Avg. Area	4229	mm²
Wet Density	lb/ft ³		kN/m³			Wet Density	100.99 lb/ft3	15.86	kN/m³	
Pocket Pen: Rdg	1.10 tsf	Torvane: Rdg	0.54	tsf		Pocket Pen: Rdg	0.84 tsf	Torvane: Rdg	0.48	tsf
Su	1.10 ksf	Std vane Su	1.11	ksf		Su	0.84 ksf	Std vane Su	0.98	ksf
Su	52.7 kPa	Su	53.0	kPa		Su	40.2 kPa	Su	47.1	kPa
Qu: Displacemer	N/A mm					Qu: Displacemer	6.50 mm			
Load Cell	kN					Load Cell	0.245 kN			
Su	kPa					Su	29.0 kPa			
Su	ksf					Su	0.61 ksf			
Teet Hele	40.455	Danéh	40.40	faat	-	Teet Hele	40.450	Danth	20.22	fact
Test Hole	19-155	<u>Deptn</u> Semula No	10-12 T244	Teet		Test Hole	19-156	<u>Deptn</u> Sample No	20-22	Teet
Mat L Tara M/t		Sample NO.	1314			Mat 1 Tara M/t	260.16 a	Sample NO.	1320	
Vvel + Tare VVI.	200.80 g	Lengin	1/8			vvel + Tare vvl.	209.10 g	Lengin		
Dry + Tare WL.	186.56 g	Diameter	2050	[[][[] 		Dry + Tare WL.	195.38 g	Diameter		[[][[]
	39.28 g	Area	3959	mm -			38.54 g	Area		mm-
vvt. vvater	69.30 g	vveight	1216.98	g		vvt. vvater	73.78 g	vveight		g
Dry vvt.	147.28 g	Strain	5.48	%		Dry vvt.	156.84 g	Strain		%
Moisture Cont.	47.1 %	Avg. Area	4189	mm²	-	Moisture Cont.	47.0 %	Avg. Area	1	mm²
Wet Density	107.80 lb/ft ³	16.93	kN/m ^s	4-6	-	Wet Density			kN/m ^s	4-6
Pocket Pen: Rag	1.40 tsr	Iorvane: Rdg	0.59	tsr		Pocket Pen: Rag	0.90 tst	Iorvane: Rdg	0.44	tst
Su	1.40 KST	Std vane Su	1.21	ksf		Su	0.90 KST	Std vane Su	0.90	ksf
	67.0 KPa	Su	57.9	кРа	-	SU On Distance	43.1 KPa	Su	43.1	kPa
Qu: Displacemer	9.75 mm					Qu: Displacemer	N/A mm			
Load Cell	0.312 KN					Load Cell	KN			
Su	37.2 kPa					Su	kPa			
Su	0.78 ksf				4	Su	ksf			
Test Hole	19-157	Depth	30-32	feet	1	Test Hole	19-158	Depth	15-17	feet
		Sample No.	T337	•				Sample No.	T344	
Wet + Tare Wt.	251.96 g	Length	175	mm		Wet + Tare Wt.	308.88 g	Length	176	mm
Dry + Tare Wt.	177.64 g	Diameter	71	mm		Dry + Tare Wt.	216.19 g	Diameter	71	mm
Tare Wt.	36.52 g	Area	3959	mm²		Tare Wt.	37.42 g	Area	3959	mm²
Wt. Water	74.32 g	Weight	1195.50	g		Wt. Water	92.69 g	Weight	1209.78	g
Dry Wt.	141.12 g	Strain	5.57	%		Dry Wt.	178.77 g	Strain	5.11	%
Moisture Cont.	52.7 %	Avg. Area	4193	mm²		Moisture Cont.	51.8 %	Avg. Area	4173	mm²
Wet Density	107.72 lb/ft ³	16.92	kN/m³		1	Wet Density	108.38 lb/ft3	17.03	kN/m³	
Pocket Pen: Rdc	0.63 tsf	Torvane: Rdg	0.36	tsf		Pocket Pen: Rdc	1.33 tsf	Torvane: Rdg	0.64	tsf
Su	0.63 ksf	Std vane Su	0.74	ksf		Su	1.33 ksf	Std vane Su	1.31	ksf
Su	30.2 kPa	Su	35.3	kPa		Su	63.7 kPa	Su	62.8	kPa
Qu: Displacemer	9.75 mm				1	Qu: Displacemer	9.00 mm			
Load Cell	0.195 kN					Load Cell	0.388 kN			
Su	23.3 kPa					Su	46.5 kPa			
Su	0 49 ksf					Su	0 97 kef			
Gu	ונא עדינ	1				Gu	V.VI NJI	1		

UNCONFINED COMPRESSION TEST

PROJECT:	Contract 6 - Rutland	Trunk Sewer
PROJECT No.:	143691.7	

<u>Test Hole</u>	19-159	<u>Depth</u>	25-27	feet		<u>Test Hole</u>	19-160	<u>Depth</u>	35-36	fe
		Sample No.	T355	_				Sample No.	T367	_
Wet + Tare Wt.	330.02 g	Length	172	mm	1	Wet + Tare Wt.	302.40 g	Length		r
Dry + Tare Wt.	242.48 g	Diameter	71	mm		Dry + Tare Wt.	273.11 g	Diameter		r
Tare Wt.	37.60 g	Area	3959	mm²		Tare Wt.	37.32 g	Area		r
Wt. Water	87.54 g	Weight	1137.45	g		Wt. Water	29.29 g	Weight		ç
Dry Wt.	204.88 g	Strain	6.54	%		Dry Wt.	235.79 g	Strain		Q
Moisture Cont.	42.7 %	Avg. Area	4236	mm²		Aoisture Cont.	12.4 %	Avg. Area		r
Wet Density	104.27 lb/ft ³	16.38	kN/m³			Wet Density	lb/ft ³	U	kN/m³	
Pocket Pen: Rdc	0.75 tsf	Torvane: Rdg	0.37	tsf	Po	ocket Pen: Rdg	tsf	Torvane: Rdg		t
Su	0.75 ksf	Std vane Su	0.76	ksf		Su	ksf	Std vane Su		k
Su	35.9 kPa	Su	36.3	kPa		Su	kPa	Su		k
Qu: Displacemer	11.25 mm				Qı	: Displacement	mm			
Load Cell	0.205 kN					Load Cell	kN	Silt Till - trace sa	and. arave	el
Su	24.2 kPa					Su	kPa	arev. moist. loos	e	
Su	0.51 ksf					Su	ksf	g y ,,		
		.						I		
Test Hole	19-161	<u>Depth</u>	10-12	feet		<u>Test Hole</u>	19-162	<u>Depth</u>	25-27	f
		Sample No.	T381	-				Sample No.	T394	_
Wet + Tare Wt.	246.89 g	Length	170	mm	1	Wet + Tare Wt.	344.60 g	Length	176	n
Dry + Tare Wt.	182.84 g	Diameter	71	mm		Dry + Tare Wt.	245.88 g	Diameter	70	n
Tare Wt.	30.96 g	Area	3959	mm²		Tare Wt.	32.06 g	Area	3848	n
Wt. Water	64.05 g	Weight	1149.77	g		Wt. Water	98.72 g	Weight	1210.40	g
Dry Wt.	151.88 g	Strain	5.15	%		Dry Wt.	213.82 g	Strain	5.11	%
Moisture Cont.	42.2 %	Avg. Area	4174	mm²	N	Moisture Cont.	46.2 %	Avg. Area	4056	n
Wet Density	106.64 lb/ft ³	16.75	kN/m³			Wet Density	111.56 lb/ft ³	17.52	kN/m³	
Pocket Pen: Rdg	1.90 tsf	Torvane: Rdg	0.77	tsf	Po	ocket Pen: Rdg	0.90 tsf	Torvane: Rdg	0.39	t
Su	1.90 ksf	Std vane Su	1.58	ksf		Su	0.90 ksf	Std vane Su	0.80	k
Su	91.0 kPa	Su	75.5	kPa		Su	43.1 kPa	Su	38.2	k
<u>Qu:</u> Displacemer	8.75 mm				Qı	<u>ı:</u> Displacemer	9.00 mm			
Load Cell	0.377 kN					Load Cell	0.273 kN			
Su	45.2 kPa					Su	33.7 kPa			
Su	0.94 ksf					Su	0.70 ksf			
Test Hole	19-163	<u>Depth</u>	20-22	feet		Test Hole	19-164	<u>Depth</u>	25-27	fe
		Sample No.	T402	-				Sample No.	T412	-
Wet + Tare Wt.	365.65 g	Length	175	mm	١	Wet + Tare Wt.	358.12 g	Length	176	n
Dry + Tare Wt.	268.77 g	Diameter	71	mm		Dry + Tare Wt.	253.72 g	Diameter	71	n
Tare Wt.	30.43 g	Area	3959	mm²		Tare Wt.	38.28 g	Area	3959	n
Wt. Water	96.88 g	Weight	1197.26	g		Wt. Water	104.40 g	Weight	1179.00	g
Dry Wt.	238.34 g	Strain	5.71	%		Dry Wt.	215.44 g	Strain	5.11	9
Moisture Cont.	40.6 %	Avg. Area	4199	mm²	Ν	Noisture Cont.	<u>48.5</u> %	Avg. Area	4173	n
Wet Density	107.88 lb/ft3	16.95	kN/m³			Wet Density	105.63 lb/ft3	16.59	kN/m³	
Pocket Pen: Rdg	1.03 tsf	Torvane: Rdg	0.45	tsf	Po	ocket Pen: Rdg	0.73 tsf	Torvane: Rdg	0.42	t
Su	1.03 ksf	Std vane Su	0.92	ksf		Su	0.73 ksf	Std vane Su	0.86	k
Su	49.3 kPa	Su	44.1	kPa		Su	35.0 kPa	Su	41.2	k
Qu: Displacemer	10.00 mm				QL	<u>ı:</u> Displacemer	9.00 mm			
Load Cell	0.324 kN					Load Cell	0.278 kN			
Su	38.6 kPa					Su	33.3 kPa			
Su	0.81 kef					Su	0 70 kef			
30	0.01 K31					Su	0.10 131			

UNCONFINED COMPRESSION TEST

PROJECT:	Contract 6 - Rutland	Trunk Sewer
PROJECT No.:	143691.7	

Test Hole	19-165	<u>Depth</u>	20-22	feet	Tes	<u>st Hole</u>	19-166		<u>Depth</u>	20-22	feet
		Sample No.	T421	-					Sample No.	T440	
Wet + Tare Wt.	251.93 g	Length	176	mm	Wet +	+ Tare Wt.	283.40	g	Length	176	mm
Dry + Tare Wt.	181.16 g	Diameter	71	mm	Dry -	+ Tare Wt.	194.61	g	Diameter	71	mm
Tare Wt.	38.01 g	Area	3959	mm²		Tare Wt.	30.91	g	Area	3959	mm²
Wt. Water	70.77 g	Weight	1147.98	g		Wt. Water	88.79	g	Weight	1199.60	g
Dry Wt.	143.15 g	Strain	7.10	%		Dry Wt.	163.70	g	Strain	4.55	%
Moisture Cont.	49.4 %	Avg. Area	4262	mm²	Moist	ture Cont.	54.2	%	Avg. Area	4148	mm²
Wet Density	102.85 lb/ft ³	16.16	kN/m³		We	et Density	107.47	lb/ft³	16.88 k	(N/m³	
Pocket Pen: Rdg	1.18 tsf	Torvane: Rdg	0.54	tsf	Pocket	<u>Pen</u> : Rdg	1.05	tsf	Torvane: Rdg	0.45	tsf
Su	1.18 ksf	Std vane Su	1.11	ksf		Su	1.05	ksf	Std vane Su	0.92	ksf
Su	56.5 kPa	Su	53.0	kPa		Su	50.3	kPa	Su	44.1	kPa
Qu: Displacemer	12.50 mm				Qu: Di	splacemer	8.00	mm			
Load Cell	0.246 kN					Load Cell	0.261	kN			
Su	28.9 kPa					Su	31.5	kPa			
Su	0.60 ksf					Su	0.66	ksf			
_		•		_					•		_
Test Hole	19-167	<u>Depth</u>	25-27	feet	Tes	<u>st Hole</u>	19-168		<u>Depth</u>	10-12	feet
		Sample No.	T457	-					Sample No.	T447	
Wet + Tare Wt.	351.05 g	Length		mm	Wet -	+ Tare Wt.	297.14	g	Length	176	mm
Dry + Tare Wt.	320.72 g	Diameter		mm	Dry -	+ Tare Wt.	208.08	g	Diameter	71	mm
Tare Wt.	30.43 g	Area		mm²		Tare Wt.	30.92	g	Area	3959	mm²
Wt. Water	30.33 g	Weight		g		Wt. Water	89.06	g	Weight	1187.81	g
Dry Wt.	290.29 g	Strain		%		Dry Wt.	177.16	g	Strain	3.55	%
Moisture Cont.	10.4 %	Avg. Area		mm²	Moist	ture Cont.	50.3	%	Avg. Area	4105	mm²
Wet Density	#DIV/0! lb/ft3	#DIV/0!	kN/m³		We	et Density	106.42	lb/ft³	16.72 k	⟨N/m³	
Pocket Pen: Rdg	tsf	Torvane: Rdg		tsf	Pocket	: Pen: Rdg	1.50	tsf	Torvane: Rdg	0.69	tsf
Su	ksf	Std vane Su		ksf		Su	1.50	ksf	Std vane Su	1.41	ksf
Su	kPa	Su		kPa		Su	71.8	kPa	Su	67.7	kPa
Qu: Displacement	mm				Qu: Di	splacemer	6.25	mm			
Load Cell	kN	Silt Till - trace sa	and, grav	el		Load Cell	0.287	kN			
Su	kPa	grey, moist, loos	se			Su	35.0	kPa			
Su	ksf					Su	0.73	ksf			
				_							
Test Hole	19-169	Depth	15-17	feet	Tes	t Hole	19-171		Depth	15-17	feet
		Sample No.	1462	-			o / o · = =		Sample No.	1475	
Wet + Tare Wt.	414.27 g	Length	176	mm	Wet -	⊦ Iare Wt.	312.05	g	Length	176	mm
Dry + Tare Wt.	298.04 g	Diameter	71	mm	Dry -	+ I are Wt.	224.37	g	Diameter	72	mm
Tare Wt.	30.41 g	Area	3959	mm²		Tare Wt.	30.84	g	Area	4072	mm²
Wt. Water	116.23 g	Weight	1298.37	g		Wt. Water	87.68	g	Weight	1213.14	g
Dry Wt.	267.63 g	Strain	6.11	%		Dry Wt.	193.53	g	Strain	4.69	%
Moisture Cont.	43.4 %	Avg. Area	4217	mm²	Moist	ture Cont.	45.3	%	Avg. Area	4272	mm²
Wet Density	116.32 lb/ft3	18.27	kN/m³		We	et Density	105.69	lb/ft³	16.60 k	(N/m³	
Pocket Pen: Rdg	1.30 tsf	Torvane: Rdg	0.57	tsf	Pocket	: Pen: Rdg	0.98	tsf	Torvane: Rdg	0.47	tsf
Su	1.30 ksf	Std vane Su	1.17	ksf		Su	0.98	ksf	Std vane Su	0.96	ksf
Su	62.2 kPa	Su	55.9	kPa		Su	46.9	kPa	Su	46.1	kPa
Qu: Displacemer	10.75 mm				Qu: Di	splacemer	8.25	mm			
Load Cell	0.383 kN					Load Cell	0.270	kN			
Su	45.4 kPa					Su	31.6	kPa			
Su	0.95 ksf					Su	0.66	ksf			
- 4		x							1		

F

UNCONFINED COMPRESSION TEST

PROJECT:	Contract 6 - Rutland	Trunk Sewer
PROJECT No.:	143691.7	

<u>Test Hole</u>	19-173	<u>Depth</u>	10-12	feet		Test Hole	19-239	<u>Depth</u>	15-17	feet
		Sample No.	T493					Sample No.	T372	
Wet + Tare Wt.	216.71 g	Length	169	mm		Wet + Tare Wt.	257.71 g	Length	175	mm
Dry + Tare Wt.	161.37 g	Diameter	72	mm		Dry + Tare Wt.	184.60 g	Diameter	71	mm
Tare Wt.	30.95 g	Area	4072	mm²		Tare Wt.	30.61 g	Area	3959	mm²
Wt. Water	55.34 g	Weight	1180.12	g		Wt. Water	73.11 g	Weight	1197.99	g
Dry Wt.	130.42 g	Strain	2.22	%		Dry Wt.	153.99 g	Strain	4.86	%
Moisture Cont.	42.4 %	Avg. Area	4164	mm²		Moisture Cont.	47.5 %	Avg. Area	4161	mm²
Wet Density	107.07 lb/ft3	16.82	kN/m³			Wet Density	107.94 lb/ft ³	16.96 A	⟨N/m³	
Pocket Pen: Rdg	1.13 tsf	Torvane: Rdg	0.53	tsf		Pocket Pen: Rdg	1.50 tsf	<u>Torvane:</u> Rdg	0.69	tsf
Su	1.13 ksf	Std vane Su	1.09	ksf		Su	1.50 ksf	Std vane Su	1.41	ksf
Su	54.1 kPa	Su	52.0	kPa		Su	71.8 kPa	Su	67.7	kPa
<u>Qu:</u> Displacemer	3.75 mm					Qu: Displacemer	8.50 mm			
Load Cell	0.163 kN					Load Cell	0.311 kN			
Su	19.6 kPa					Su	37.4 kPa			
Su	0.41 ksf					Su	0.78 ksf			
Test Hole	19-240	Depth	15-17	feet		Test Hole		Depth		feet
-		Sample No.	T430			_		Sample No.		
Wet + Tare Wt.	270.66 g	Length	178	mm		Wet + Tare Wt.	g	 Length		mm
Dry + Tare Wt.	197.60 g	Diameter	71	mm		Dry + Tare Wt.	g	Diameter		mm
Tare Wt.	36.43 g	Area	3959	mm²		Tare Wt.	g	Area	0	mm²
Wt. Water	73.06 g	Weight	1235.92	g		Wt. Water	g	Weight		g
Dry Wt.	161.17 g	Strain	3.51	%		Dry Wt.	g	Strain		%
Moisture Cont.	45.3 %	Avg. Area	4103	mm²		Moisture Cont.	%	Avg. Area		mm²
Wet Density	109.48 lb/ft3	17.20	kN/m³			Wet Density	lb/ft ³	ŀ	⟨N/m³	
Pocket Pen: Rdg	1.40 tsf	Torvane: Rdg	0.65	tsf		Pocket Pen: Rdg	tsf	Torvane: Rdg		tsf
Su	1.40 ksf	Std vane Su	1.33	ksf		Su	ksf	Std vane Su		ksf
Su	67.0 kPa	Su	63.7	kPa		Su	kPa	Su		kPa
<u>Qu:</u> Displacemer	6.25 mm					Qu: Displacement	mm			
Load Cell	0.326 kN					Load Cell	kN			
Su	39.7 kPa					Su	kPa			
Su	0.83 ksf					Su	ksf			
Test Hole		Depth		feet		Test Hole		Depth		feet
<u> </u>		Sample No.						Sample No.		
Wet + Tare Wt.	a	Lenath		mm		Wet + Tare Wt.	a	Length		mm
Dry + Tare Wt.	a	Diameter		mm		Dry + Tare Wt	a	Diameter		mm
Tare Wt	a	Area		mm²		Tare Wt	a	Area	0	mm²
Wt. Water	a	Weiaht		q		Wt. Water	a	Weight	5	a
Drv Wt.	a	Strain		%		Drv Wt.	a	Strain		%
Moisture Cont.	%	Avg. Area		mm²		Moisture Cont.	%	Avg. Area		mm²
Wet Density	lb/ft ³	5	kN/m³			Wet Density	lb/ft ³	<u>J</u>	(N/m³	
ocket Pen: Rdg	tsf	Torvane: Rdg		tsf	-	Pocket Pen: Rdg	tsf	Torvane: Rdg		tsf
Su	ksf	Std vane Su		ksf		Su	ksf	Std vane Su		ksf
Su	kPa	Su		kPa		Su	kPa	Su		kPa
<u>u:</u> Displacement	mm					Qu: Displacement	mm			
Load Cell	kN					Load Cell	kN			
Su	kPa					Su	kPa			
Su	ksf					Su	ksf			
								1		

UNCONFINED COMPRESSION TEST

PROJECT:	Contract 6 - Rutland	Trunk Sewer
PROJECT No.:	143691.7	

DATE: December 2020

Tost Holo	20-244	Donth	15_17	foot	Tost Holo	20-246	Donth	10_12 foot
	20-244	Sample No	T5	-		20-240	<u>Deptii</u> Sample No	T31
Wet + Tare Wt	125 37 a	Length	176	mm	Wet + Tare W/t	355 35 a	Length	177 mm
Drv + Tare Wt	324 95 g	Diameter	72	mm	Dry + Tare Wt	261 63 g	Diameter	72 mm
Tare Wt	31 56 g	Area	4072	mm ²	Tare Wt	30.60 g	Area	4072 mm ²
Wt Water	100 42 g	Weight	1225.05	a	Wt Water	93 72 g	Weight	1298 38 g
Dry Wt	293.39 g	Strain	8 52	9	Dry Wt	231.03 g	Strain	5 65 %
Moisture Cont.	34.2 %	Ava Area	4451	mm ²	Moisture Cont.	40.6 %	Avg Area	4315 mm ²
Wet Density	106.72 lb/ft ³	16.77	kN/m ³		Wet Density	112.47 lb/ft ³	17.67	KN/m ³
Pocket Pen: Rdc	0.85 tsf	Torvane: Rdg	0.38	tsf	Pocket Pen: Rdc	1.05 tsf	Torvane: Rdg	0.53 tsf
Su	0.85 ksf	Std vane Su	0.77	ksf	Su	1.05 ksf	Std vane Su	1.08 ksf
Su	40.7 kPa	Su	36.8	kPa	Su	50.3 kPa	Su	51.5 kPa
Qu: Displacemer	15.00 mm				Qu: Displacemer	10.00 mm		
Load Cell	0.165 kN				Load Cell	0.369 kN		
Su	18.5 kPa				Su	42.8 kPa		
Su	0.39 ksf				Su	0.89 ksf		
		1					1	
Test Hole	20-248	Depth	5-7	feet	Test Hole	20-248	<u>Depth</u>	10-12 feet
		Sample No.	T54	-			Sample No.	T55
Wet + Tare Wt.	364.95 g	Length	176	mm	Wet + Tare Wt.	466.23 g	Length	175 mm
Dry + Tare Wt.	289.25 g	Diameter	72	mm	Dry + Tare Wt.	383.72 g	Diameter	72 mm
Tare Wt.	31.08 g	Area	4072	mm²	Tare Wt.	31.80 g	Area	4072 mm²
Wt. Water	75.70 g	Weight	1394.98	g	Wt. Water	82.51 g	Weight	1341.50 g
Dry Wt.	258.17 g	Strain	5.68	%	Dry Wt.	351.92 g	Strain	6.57 %
Malatura Cant		Δ	1017	m m ²			Δ	10E0 maxma ²
Moisture Cont.	29.3 %	Avg. Area	4317	mm-	Moisture Cont.	23.4 %	Avg. Area	4358 mm-
Wet Density	29.3 % 121.53 lb/ft ³	Avg. Area	4317 kN/m³		Wet Density	23.4 % 117.54 lb/ft ³	Avg. Area	4358 mm ⁻ kN/m ³
Wet Density Pocket Pen: Rdg	29.3 % 121.53 lb/ft ³ 1.65 tsf	Avg. Area 19.09 Torvane: Rdg	4317 kN/m ³ 0.55	tsf	Moisture Cont. Wet Density Pocket Pen: Rdg	23.4 % 117.54 lb/ft ³ 1.40 tsf	Avg. Area 18.46 / Torvane: Rdg	4358 mm ⁻ kN/m ³ 0.53 tsf
Wet Density Pocket Pen: Rdg Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf	Avg. Area 19.09 Torvane: Rdg Std vane Su	4317 kN/m ³ 0.55 1.13	tsf ksf	Moisture Cont. Wet Density Pocket Pen: Rdg Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf	Avg. Area18.46Torvane:RdgStd vane Su	4358 mm ⁻ k//m ³ 0.53 tsf 1.08 ksf
Wet Density Pocket Pen: Rdc Su Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa	Avg. Area 19.09 Torvane: Rdg Std vane Su Su	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su	4358 mm ² k//m ³ 0.53 tsf 1.08 ksf 51.5 kPa
Wet Density Pocket Pen: Rdg Su Su Qu: Displacemer	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm	Avg. Area 19.09 Torvane: Rdg Std vane Su Su	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su	4358 mm ² (N/m ³ 0.53 tsf 1.08 ksf 51.5 kPa
Wet Density <u>Pocket Pen</u> : Rdc Su Su Qu: Displacemer Load Cell	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN	Avg. Area 19.09 Torvane: Rdg Std vane Su Su	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa
Woisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa	Avg. Area 19.09 Torvane: Rdg Std vane Su Su	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa
Wet Density <u>Pocket Pen</u> : Rdç Su Su <u>Qu:</u> Displacemer Load Cell Su Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf	Avg. Area 19.09 Torvane: Rdg Std vane Su Su	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa
Woisture Cont. Wet Density Pocket Pen: Rdç Su Su Su Qu: Displacemer Load Cell Su Su Su Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Depth	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Qu: Displacement Load Cell Su Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Depth	4358 mm ² (<i>N/m</i> ³ 0.53 tsf 1.08 ksf 51.5 kPa feet
Wet Density Pocket Pen: Rdc Su Su Qu: Displacemer Load Cell Su Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf	Avg. Area 19.09 Torvane: Rdg Std vane Su Su <u>Depth</u> Sample No.	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Depth Sample No.	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa
Wet Density Pocket Pen: Rdg Su Su Su Qu: Displacemer Load Cell Su Su Su Wet + Tare Wt.	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su <u>Depth</u> <u>Sample No.</u> Length	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Qu: Displacement Load Cell Su Su Su Wet + Tare Wt.	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su <u>Depth</u> <u>Sample No.</u> Length	4358 mm ⁻ (N/m ³ 0.53 tsf 1.08 ksf 51.5 kPa feet mm
Wet Density Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su Su Wet + Tare Wt. Dry + Tare Wt.	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su <u>Depth</u> <u>Sample No.</u> Length Diameter	4317 kN/m ³ 0.55 1.13 53.9	feet mm mm	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su Moisture Cont. Su Wet + Tare Wt. Dry + Tare Wt.	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su <u>Depth</u> <u>Sample No.</u> Length Diameter	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm
Wet Density Pocket Pen: Rdg Su Su Su Qu: Displacemer Load Cell Su Su Su UEST Hole Wet + Tare Wt. Dry + Tare Wt. Tare Wt.	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf g g g	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su <u>Depth</u> <u>Sample No.</u> Length Diameter Area	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su Su Su Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Tare Wt.	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su <u>Depth</u> <u>Sample No.</u> Length Diameter Area	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ²
Wet Density Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su Su Su Su Wet + Tare Wt. Su Dry + Tare Wt. Tare Wt. Wet. Water	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf g g g g g	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su <u>Depth</u> <u>Sample No.</u> Length Diameter Area Weight	4317 kN/m ³ 0.55 1.13 53.9	feet mm mm ² g	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su U U Vet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g g g	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Su Su Su Length Diameter Area Weight	4358 mm ² 0.53 tsf 1.08 ksf 51.5 <i>kPa</i> feet mm mm 0 mm ² g
Woisture Cont. Wet Density Pocket Pen: Rdg Su Su Su Qu: Displacemer Load Cell Su Su Su Su Su Su Su Su Su Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf 9 9 9 9 9 9 9 9 9 9 9 9 9	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Su Su Length Diameter Area Weight Strain	4317 kN/m ³ 0.55 1.13 53.9	feet mm mm mm ² g	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su Su Su Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Tare Wt. Wt. Water Dry Wt.	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf 9 9 9 9 9 9 9 9 9 9	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Depth Sample No. Length Diameter Area Weight Strain	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g %
Woisture Cont. Wet Density Pocket Pen: Rdç Su Su Su Qu: Displacemer Load Cell Su Su Su U Vet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont.	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf 9 9 9 9 9 9 9 9 9 9 9 9 9	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	4317 kN/m ³ 0.55 1.13 53.9	feet mm mm ² g % mm ²	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su Su U Vet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont.	23.4 % 117.54 lb/ft ³ 1.40 tsf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g g g g g g g	Avg. Area 18.46 / 18.46 / Torvane: Rdg Std vane Su Su U Depth Sample No. Length Diameter Area Weight Strain Avg. Area	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g % mm ²
Wet Density Pocket Pen: Rdç Su Su Su Qu: Displacemer Load Cell Su Su Su Su Su Su Su Su Su Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf 9 9 9 9 9 9 9 9 9 9 9 9 9	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	4317 kN/m ³ 0.55 1.13 53.9	tsf ksf kPa feet mm mm ² g % mm ²	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su U Test Hole Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf 9 9 9 9 9 9 9 9 9 9 9 9 9	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g % mm ² kN/m ³
Wet Density Wet Density Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su Su Qu: Displacemer Load Cell Su Su Su Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf g g g g g g g g g g g g g	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	<u>4317</u> kN/m ³ 0.55 1.13 53.9	tsf ksf kPa feet mm mm ² g % mm ² tsf	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su Su Su Moist Hole Su Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen:	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g g g g g g g g g g g	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	4358 mm ² (N/m ³ 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g % mm ² (N/m ³ tsf
Woisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su Su Su Su Uny + Tare Wt. Dry + Tare Wt. Dry + Tare Wt. Ury + Tare Wt. Ury + Tare Wt. Wt. Water Dry Wt. Wt. Water Dry Wt. Woisture Cont. Wet Density Pocket Pen: Rdg Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf 9 9 9 9 9 9 9 9 1b/ft ³ tsf ksf	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	<u>4317</u> kN/m ³ 0.55 1.13 53.9	tsf ksf kPa feet mm mm ² g % mm ² tsf ksf	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su U Test Hole Wet + Tare Wt. Dry + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g g g g g g g g g g g	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g % mm ² kN/m ³ tsf ksf
Wet Density Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su Su Su Su Qu: Displacemer Load Cell Su Su Su Su Su Su Su Su Su Met + Tare Wt. Dry + Tare Wt. Dry + Tare Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf g g g g g g g g ksf lb/ft ³ tsf ksf kSf kPa	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	<u>4317</u> kN/m ³ 0.55 1.13 53.9	tsf ksf kPa feet mm mm ² g % mm ² tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Qu: Displacement Load Cell Su Su Su U Example Cont Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g g g g g g ksf ksf kSf kPa	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area / Std vane Su Std vane Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g % mm ² kN/m ³ tsf ksf kSf kPa
Wet Density Wet Density Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su Su Qu: Displacemer Load Cell Su Su Su Su Su Su Su Met + Tare Wt. Tare Wt. Dry + Tare Wt. Water Dry Wt. Woisture Cont. Wet Density Pocket Pen: Rdg Su Su Su Su Su Su Qu: Displacement Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf g g g g g g g ksf lb/ft ³ tsf ksf ksf ksf kPa mm	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	<u>4317</u> kN/m ³ 0.55 1.13 53.9	tsf ksf kPa feet mm mm ² g % mm ² tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su U Test Hole Wet + Tare Wt. Dry + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g g g g g g g g g g g	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Su Su Su Su Su Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g % mm ² kN/m ³ tsf ksf kSf kPa
Wet Density Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su Su Qu: Displacemer Load Cell Su Su Su Su Su Moist Hole Su Wet + Tare Wt. Dry + Tare Wt. Dry + Tare Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Qu: Displacement Load Cell	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf 9 9 9 9 9 9 9 9 1b/ft ³ tsf ksf kSf kPa mm kN	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area Weight Strain Avg. Area	<u>4317</u> kN/m ³ 0.55 1.13 53.9	tsf ksf kPa feet mm mm ² g % mm ² tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su U Test Hole Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g g g g g ksf lb/ft ³ tsf ksf kPa mm kN	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area / Torvane: Rdg Std vane Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g % mm ² kN/m ³ tsf ksf kSf kPa
Wet Density Wet Density Pocket Pen: Rdç Su Su Qu: Displacemer Load Cell Su Su Su Qu: Displacemer Load Cell Su Su Su Met + Tare Wt. Tare Wt. Dry + Tare Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Qu: Displacement Load Cell Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf g g g g g g g ksf ksf ksf kPa mm kN kPa	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area Weight Strain Avg. Area	<u>4317</u> kN/m ³ 0.55 1.13 53.9	feet mm mm ² g % mm ² tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Qu: Displacement Load Cell Su Su Test Hole Wet + Tare Wt. Dry + Tare Wt. Tare Wt. Wt. Water Dry Wt. Moisture Cont. Wet Density Pocket Pen: Rdg Su Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf g g g g g g ksf lb/ft ³ tsf ksf kPa mm kN kPa	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area / Torvane: Rdg Std vane Su Su	4358 mm ² (<i>k</i> // <i>m</i> ³ 0.53 tsf 1.08 ksf 51.5 <i>kPa</i> feet mm mm 0 mm ² g % mm ² <i>kSf</i> <i>kSf</i> <i>kPa</i>
Weisture Cont. Wet Density Pocket Pen: Rdg Su Su Qu: Displacemer Load Cell Su Su Su Su Su Su Su Su Su Su	29.3 % 121.53 lb/ft ³ 1.65 tsf 1.65 ksf 79.0 kPa 10.00 mm 0.382 kN 44.2 kPa 0.92 ksf 9 9 9 9 9 9 9 9 1b/ft ³ tsf ksf kPa mm kN kPa ksf	Avg. Area 19.09 Torvane: Rdg Std vane Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area Weight Strain Avg. Area	<u>4317</u> kN/m ³ 0.55 1.13 53.9	tsf ksf kPa feet mm mm ² g % mm ² tsf ksf kPa	Moisture Cont. Wet Density Pocket Pen: Rdç Su Su Qu: Displacement Load Cell Su Su Su Su Su Su Su Su Su Su	23.4 % 117.54 lb/ft ³ 1.40 tsf 1.40 ksf 67.0 kPa 11.50 mm 0.257 kN 29.5 kPa 0.62 ksf 9 9 9 9 9 9 9 9 1b/ft ³ tsf ksf kPa mm kN kPa ksf	Avg. Area 18.46 / Torvane: Rdg Std vane Su Su Su Depth Sample No. Length Diameter Area Weight Strain Avg. Area / Torvane: Rdg Std vane Su Su	4358 mm ² 0.53 tsf 1.08 ksf 51.5 kPa feet mm mm 0 mm ² g % mm ² kN/m ³ tsf ksf kPa

Your Project #: 143691.7 Site Location: RUTLAND TRUNK SEWER Your C.O.C. #: N017656

Attention: GIL ROBINSON

DYREGROV ROBINSON INC UNIT 1, 1692 DUBLIN AVENUE WINNIPEG, MB CANADA R3H 1A8

> Report Date: 2020/03/03 Report #: R2852659 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C013407 Received: 2020/02/25, 09:00

Sample Matrix: Soil # Samples Received: 6

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride (Soluble)	6	2020/03/02	2020/03/02	AB SOP-00033 / AB SOP- 00020	SM 23-4500-Cl-E m
Resistivity	6	N/A	2020/03/02		Auto Calc
Conductivity @25C (Soluble)	6	2020/03/02	2020/03/02	AB SOP-00033 / AB SOP- 00004	SM 23 2510 B m
pH @25C (Soluble)	6	2020/03/02	2020/03/02	AB SOP-00033 / AB SOP- 00006	SM 23 4500 H+B m
Soluble Ions	6	2020/03/02	2020/03/02	AB SOP-00033 / AB SOP- 00042	EPA 6010d R5 m
Soluble Ions Calculation	6	2020/02/26	2020/03/02		Auto Calc
Soluble Paste	6	2020/03/02	2020/03/02	AB SOP-00033	Carter 2nd ed 15.2 m

Remarks:

Bureau Veritas Laboratories are accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by BV Labs are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in BV Labs profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and BV Labs in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

BV Labs liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. BV Labs has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by BV Labs, unless otherwise agreed in writing. BV Labs is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by BV Labs, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your Project #: 143691.7 Site Location: RUTLAND TRUNK SEWER Your C.O.C. #: N017656

Attention: GIL ROBINSON

DYREGROV ROBINSON INC UNIT 1, 1692 DUBLIN AVENUE WINNIPEG, MB CANADA R3H 1A8

> Report Date: 2020/03/03 Report #: R2852659 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C013407 Received: 2020/02/25, 09:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bvlabs.com Phone# (403) 291-3077

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

RESULTS OF CHEMICAL ANALYSES OF SOIL

BV Labs ID		XL2647	XL2648		XL2649		
Sampling Date		2020/02/24	2020/02/24		2020/02/24		
COC Number		N017656	N017656		N017656		
	UNITS	19-149 (G286-2.7)	19-151 (G267-2.2)	RDL	19-153 (G248-4.1)	RDL	QC Batch
Calculated Parameters		<u> </u>					
Resistivity @ 25 °C	ohm-m	8.7	35	0.050	1.6	0.050	9777999
Calculated Sulphate (SO4)	%	0.017	0.0010	0.00013	0.34	0.00013	9778002
Soluble Parameters	•	•				•	
Soluble Chloride (Cl)	mg/L	30	18	5.0	490 (1)	10	9783378
Soluble Conductivity	dS/m	1.2	0.29	0.020	6.1	0.020	9782932
Soluble pH	рН	7.55	7.81	N/A	7.59	N/A	9781975
Saturation %	%	56	49	N/A	110	N/A	9781971
Soluble Sulphate (SO4)	mg/L	300	21	5.0	3200	5.0	9783029
		•				•	•

RDL = Reportable Detection Limit

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

BV Labs ID		XL2650	XL2651		XL2652				
Sampling Date		2020/02/24	2020/02/24		2020/02/24				
COC Number		N017656	N017656		N017656				
	UNITS	19-161 (G383-5.7)	19-167 (G456-5.7)	RDL	19- 172 (G486-6.6)	RDL	QC Batch		
Calculated Parameters									
Resistivity @ 25 °C	ohm-m	2.6	3.8	0.050	1.9	0.050	9777999		
Calculated Sulphate (SO4) %		0.20	0.13	0.00013	0.064	0.00013	9778002		
Soluble Parameters	•								
Soluble Chloride (Cl)	mg/L	220	17	5.0	850 (1)	25	9783378		
Soluble Conductivity	dS/m	3.9	2.6	0.020	5.3	0.020	9782932		
Soluble pH	рН	7.68	7.81	N/A	7.83	N/A	9781975		
Saturation %	%	95	86	N/A	41	N/A	9781971		
Soluble Sulphate (SO4)	mg/L	2100	1500	5.0	1500	5.0	9783029		
RDL = Reportable Detection L	3DI = Reportable Detection Limit								

N/A = Not Applicable

(1) Detection limits raised due to dilution to bring analyte within the calibrated range.

GENERAL COMMENTS

Results relate only to the items tested.

QUALITY ASSURANCE REPORT

QA/QC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
9781971	IK0	QC Standard	Saturation %	2020/03/02		101	%	75 - 125
9781971	IK0	RPD	Saturation %	2020/03/02	0.42		%	12
9781971	IK0	RPD [XL2648-01]	Saturation %	2020/03/02	9.8		%	12
9781975	JHC	QC Standard	Soluble pH	2020/03/02		99	%	98 - 102
9781975	JHC	Spiked Blank	Soluble pH	2020/03/02		99	%	97 - 103
9781975	JHC	RPD [XL2648-01]	Soluble pH	2020/03/02	0.26		%	N/A
9782932	LZ0	QC Standard	Soluble Conductivity	2020/03/02		96	%	75 - 125
9782932	LZ0	Spiked Blank	Soluble Conductivity	2020/03/02		99	%	90 - 110
9782932	LZ0	Method Blank	Soluble Conductivity	2020/03/02	ND,		dS/m	
					RDL=0.020			
9782932	LZ0	RPD	Soluble Conductivity	2020/03/02	0.57		%	20
9783029	LQ1	QC Standard	Soluble Sulphate (SO4)	2020/03/02		90	%	75 - 125
9783029	LQ1	Method Blank	Soluble Sulphate (SO4)	2020/03/02	ND,		mg/L	
					RDL=5.0			
9783029	LQ1	RPD	Soluble Sulphate (SO4)	2020/03/02	4.3		%	30
9783378	STI	Matrix Spike	Soluble Chloride (Cl)	2020/03/02		100	%	75 - 125
9783378	STI	QC Standard	Soluble Chloride (Cl)	2020/03/02		90	%	75 - 125
9783378	STI	Spiked Blank	Soluble Chloride (Cl)	2020/03/02		106	%	80 - 120
9783378	STI	Method Blank	Soluble Chloride (Cl)	2020/03/02	ND,		mg/L	
					RDL=5.0			
9783378	STI	RPD	Soluble Chloride (Cl)	2020/03/02	11		%	30

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

= agen Lesin

Ghayasuddin Khan, M.Sc., P.Chem., QP, Scientific Specialist, Inorganics

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Your P.O. #: 143691.7 Your Project #: 143691.7 Site Location: RUTLAND N. OF SILVER Your C.O.C. #: N017649

Attention: GIL ROBINSON

DYREGROV ROBINSON INC UNIT 1, 1692 DUBLIN AVENUE WINNIPEG, MB CANADA R3H 1A8

> Report Date: 2021/02/02 Report #: R2982658 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C106368 Received: 2021/01/29, 13:00

Sample Matrix: Soil # Samples Received: 2

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Chloride (Soluble)	2	2021/02/01	2021/02/01	AB SOP-00033 / AB SOP- 00020	SM 23-4500-Cl-E m
Resistivity	2	N/A	2021/02/01		Auto Calc
Conductivity @25C (Soluble)	2	2021/02/01	2021/02/01	AB SOP-00033 / AB SOP- 00004	SM 23 2510 B m
pH @25C (Soluble)	2	2021/02/01	2021/02/01	AB SOP-00033 / AB SOP- 00006	SM 23 4500 H+B m
Soluble Ions	2	2021/02/01	2021/02/01	AB SOP-00033 / AB SOP- 00042	EPA 6010d R5 m
Soluble Ions Calculation	2	2021/01/30	2021/02/01		Auto Calc
Soluble Paste	2	2021/02/01	2021/02/01	AB SOP-00033	Carter 2nd ed 15.2 m

Remarks:

Bureau Veritas is accredited to ISO/IEC 17025 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Bureau Veritas are based upon recognized Provincial, Federal or US method compendia such as CCME, MELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Bureau Veritas' profession using accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Bureau Veritas in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported; unless indicated otherwise, associated sample data are not blank corrected. Where applicable, unless otherwise noted, Measurement Uncertainty has not been accounted for when stating conformity to the referenced standard.

Bureau Veritas liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Bureau Veritas has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Bureau Veritas, unless otherwise agreed in writing. Bureau Veritas is not responsible for the accuracy or any data impacts, that result from the information provided by the customer or their agent.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested. When sampling is not conducted by Bureau Veritas, results relate to the supplied samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Your P.O. #: 143691.7 Your Project #: 143691.7 Site Location: RUTLAND N. OF SILVER Your C.O.C. #: N017649

Attention: GIL ROBINSON

DYREGROV ROBINSON INC UNIT 1, 1692 DUBLIN AVENUE WINNIPEG, MB CANADA R3H 1A8

> Report Date: 2021/02/02 Report #: R2982658 Version: 1 - Final

CERTIFICATE OF ANALYSIS

BV LABS JOB #: C106368 Received: 2021/01/29, 13:00

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Customer Solutions, Western Canada Customer Experience Team Email: customersolutionswest@bureauveritas.com Phone# (403) 291-3077

This report has been generated and distributed using a secure automated process.

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

DYREGROV ROBINSON INC Client Project #: 143691.7 Site Location: RUTLAND N. OF SILVER Your P.O. #: 143691.7 Sampler Initials: CR

BV Labs ID		ZF9026		7F9027			
Sampling Date		2020/12/01		2020/12/01			
COC Number		N017649		N017649			
	UNITS	TH20-244 (T5)	RDL	TH20-248 (S57)	RDL	QC Batch	
Calculated Parameters							
Resistivity @ 25 °C	ohm-m	2.7	0.050	8.5	0.050	A145428	
Calculated Sulphate (SO4)	%	0.11	0.00013	0.0063	0.00013	A145429	
Soluble Parameters							
Soluble Chloride (Cl)	mg/L	470 (1)	20	150	10	A146734	
Soluble Conductivity	dS/m	3.7	0.020	1.2	0.020	A146752	
Soluble pH	рН	7.89	N/A	8.29	N/A	A146596	
Saturation %	%	73	N/A	23	N/A	A146264	
Soluble Sulphate (SO4)	mg/L	1500	5.0	280	5.0	A146727	
RDL = Reportable Detection Limit							
N/A = Not Applicable							
(1) Detection limits raised due	e to diluti	on to bring anal	yte within	the calibrated ra	inge.		

RESULTS OF CHEMICAL ANALYSES OF SOIL

DYREGROV ROBINSON INC Client Project #: 143691.7 Site Location: RUTLAND N. OF SILVER Your P.O. #: 143691.7 Sampler Initials: CR

GENERAL COMMENTS

Sample ZF9026 [TH20-244 (T5)] : Sample was analyzed past method specified hold time for pH @25C (Soluble). Sample was analyzed past method specified hold time for Conductivity @25C (Soluble). Sample was analyzed past method specified hold time for Chloride (Soluble).

Sample ZF9027 [TH20-248 (S57)] : Sample was analyzed past method specified hold time for pH @25C (Soluble). Sample was analyzed past method specified hold time for Conductivity @25C (Soluble). Sample was analyzed past method specified hold time for Chloride (Soluble).

Results relate only to the items tested.

04/06

DYREGROV ROBINSON INC Client Project #: 143691.7 Site Location: RUTLAND N. OF SILVER Your P.O. #: 143691.7 Sampler Initials: CR

QUALITY ASSURANCE REPORT

UA/UC								
Batch	Init	QC Type	Parameter	Date Analyzed	Value	Recovery	UNITS	QC Limits
A146264	EH2	QC Standard	Saturation %	2021/02/01		99	%	75 - 125
A146264	EH2	RPD	Saturation %	2021/02/01	8.9		%	12
A146264	EH2	RPD [ZF9026-01]	Saturation %	2021/02/01	2.2		%	12
A146596	JHC	QC Standard	Soluble pH	2021/02/01		99	%	98 - 102
A146596	JHC	Spiked Blank	Soluble pH	2021/02/01		100	%	97 - 103
A146596	JHC	RPD [ZF9026-01]	Soluble pH	2021/02/01	0.25		%	N/A
A146727	PL	QC Standard	Soluble Sulphate (SO4)	2021/02/01		104	%	75 - 125
A146727	PL	Method Blank	Soluble Sulphate (SO4)	2021/02/01	ND,		mg/L	
					RDL=5.0			
A146727	PL	RPD	Soluble Sulphate (SO4)	2021/02/01	3.5		%	30
A146734	STI	Matrix Spike	Soluble Chloride (Cl)	2021/02/01		116	%	75 - 125
A146734	STI	QC Standard	Soluble Chloride (Cl)	2021/02/01		98	%	75 - 125
A146734	STI	Spiked Blank	Soluble Chloride (Cl)	2021/02/01		108	%	80 - 120
A146734	STI	Method Blank	Soluble Chloride (Cl)	2021/02/01	ND,		mg/L	
					RDL=10			
A146734	STI	RPD	Soluble Chloride (Cl)	2021/02/01	NC		%	30
A146752	LZ0	QC Standard	Soluble Conductivity	2021/02/01		96	%	75 - 125
A146752	LZ0	Spiked Blank	Soluble Conductivity	2021/02/01		99	%	90 - 110
A146752	LZ0	Method Blank	Soluble Conductivity	2021/02/01	ND,		dS/m	
					RDL=0.020			
A146752	LZ0	RPD	Soluble Conductivity	2021/02/01	11		%	20
-								

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

QC Standard: A sample of known concentration prepared by an external agency under stringent conditions. Used as an independent check of method accuracy.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

DYREGROV ROBINSON INC Client Project #: 143691.7 Site Location: RUTLAND N. OF SILVER Your P.O. #: 143691.7 Sampler Initials: CR

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Sandy (Wei) Yuan, M.Sc., QP, Scientific Specialist

BV Labs has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per ISO/IEC 17025, signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

SWELL TEST REPORT

ASTM D4546-14 TEST METHOD A

Before Te	st	After Test			<u>Soil Pr</u>	operties		
Project No	.WX11735		Depth	<u>-</u>	20-22 ft			
Project	Project #14369		Sample	-	T326	Tested By:	NM	
Client	Dyregrov Robinson Inc.		Test Hole	-	TH156	Test Start:	15-Mar-20	

Consolidation ring no.	#12	Mass(samplewet+ring+tare)	301.20 g
Mass of ring	90.51 g	Mass of tare	71.55 g
Inside diameter of the ring	6.337 cm	Mass (wet soil + ring)	229.65 g
Height of the specimen, H_{o}	2.496 cm	Mass of wet sample	139.14 g
Area of the specimen	31.540 cm2	Mass (dry soil+ring+can)	251.06 g
Mass (specimen + ring)	228.73 g	Mass of dry specimen	89.00 g
Mass of wet sample	138.2 g	Final MC of specimen	56.3%
Initial Moisture Content	55.3%	Specific gravity of Solids	2.7
		Seating pressure	1 kP
Visual Description of	Sail		

Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist, dark greyish brown

	Mass of solids	89	g
	Mass of water in specimen before test	49.22	g
	Mass of water in specimen after test	50.14	g
	Height of Solids	1.0451	ст
	Height of water before test	1.5606	ст
	Height of water after test	1.5897	ст
	Change in height of specimen after test	0.0189	ст
	Height of specimen after test	2.4771	ст
Pa	Void ratio before test	1.388	
	Void ratio after test	1.370	
	Degree of saturation before test	107.56%	
	Degree of saturation after test	111.02%	
	Dry Density before test	1.131	g/cm3

TABLE 1: Test Summary

Load No.	Pressure	Void Ratio
Seating	1	1.384
1	5	1.379
2	5	1.430
3	40	1.406
4	80	1.370

Swell

kPa
SWELL TEST REPORT

ASTM D4546-14 TEST METHOD A

Client	Dyregrov Robinson Inc.	Test Hole	TH162	Test Start: 15-Mar-20
Project	Project #14369	Sample	T394	Tested By: NM
Project No	.WX11735	Depth	25-27 ft	

Before Test

<u>After</u>	Test

Consolidation ring no.	#4	Mass(samplewet+ring+tare)	357.82 g
Mass of ring	109.99 g	Mass of tare	114.30 g
Inside diameter of the ring	6.346 cm	Mass (wet soil + ring)	243.52 g
Height of the specimen, H_{o}	2.455 cm	Mass of wet sample	133.53 g
Area of the specimen	31.629 cm2	Mass (dry soil+ring+can)	312.81 g
Mass (specimen + ring)	244.60 g	Mass of dry specimen	88.52 g
Mass of wet sample	134.6 g	Final MC of specimen	50.8%
Initial Moisture Content	52.1%	Specific gravity of Solids	2.7
		Seating pressure	1 kP
Visual Description of	0		

Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist, dark greyish brown

Soil Properties

	Mass of solids	88.52	g
	Mass of water in specimen before test	46.09	g
	Mass of water in specimen after test	45.01	g
	Height of Solids	1.0365	ст
	Height of water before test	1.4572	ст
	Height of water after test	1.4230	ст
	Change in height of specimen after test	0.0737	ст
	Height of specimen after test	2.3813	ст
Pa	Void ratio before test	1.368	
	Void ratio after test	1.297	
	Degree of saturation before test	102.73%	
	Degree of saturation after test	105.82%	
	Dry Density before test	1.140	g/cm3

TABLE 1: Test Summary

Load No.	Pressure	Void Ratio
Seating	1	1.365
1	5	1.358
2	5	1.396
3	80	1.345
4	160	1.297

Swell

kPa

SWELL TEST REPORT

ASTM D4546-14 TEST METHOD A

Before Te	st	After Test		Soil Properties		
Project No	.WX11735		Depth	10-12 ft		
Project	Project 14369.7		Sample	T493	Tested By:	NM/IT
Client	Dyregrov Robinson Inc.		Test Hole	TH19-173	Test Start:	19-Mar-20

After Test

Consolidation ring no.	#4		Mass(samplewet+ring+tare)	384.99	g
Mass of ring	109.99	g	Mass of tare	137.38	g
Inside diameter of the ring	6.346	ст	Mass (wet soil + ring)	247.61	g
Height of the specimen, H_o	2.487	ст	Mass of wet sample	137.62	g
Area of the specimen	31.629	cm2	Mass (dry soil+ring+can)	340.30	g
Mass (specimen + ring)	247.33	g	Mass of dry specimen	92.93	g
Mass of wet sample	137.3	g	Final MC of specimen	48.1%	
Initial Moisture Content	47.8%		Specific gravity of Solids	2.7	
			Seating pressure	1	kPa

Visual Description of Soil

Clay (CH) - silty, trace sand, high plastic, moist, dark greyish brown

Soil Properties

	Mass of solids	92.93	g
	Mass of water in specimen before test	44.41	g
	Mass of water in specimen after test	44.69	g
	Height of Solids	1.0882	ст
	Height of water before test	1.4041	ст
	Height of water after test	1.4129	ст
	Change in height of specimen after test	0.1537	ст
	Height of specimen after test	2.3333	ст
а	Void ratio before test	1.285	
	Void ratio after test	1.144	
	Degree of saturation before test	100.38%	
	Degree of saturation after test	113.48%	
	Dry Density before test	1.181	g/cm3

TABLE 1: Test Summary

Load No.	Pressure	Void Ratio
Seating	1	1.281
1	5	1.221
2	5	1.250
3	20	1.239
4	40	1.222
5	80	1.192
6	160	1.144

Swell

kPa

APPENDIX E

Laboratory Testing Plots

Figures E1 to E18

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure F3: Undrained Shear Strength vs Depth (Alluvial Clav)

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E4: Undrained Shear Strength vs Elevation (Alluvial Clav)

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E13: Undrained Shear Strength vs Depth (Lacustrine Clay)

Ferry Road & Riverbend CSR - Rutland Trunk Sewer Figure E14: Undrained Shear Strength vs Elevation (Lacustrine Clav)

APPENDIX F

Standard Penetration Testing Results

Table F1 – Summary of SPT Figures F1 to F3

Ferry Road & Riverbend CSR - Rutland Trunk Sewer

Test	Ground		;	Sample In	formation	า			
lest	Elevation		Soil	De	pth	Elev.	Moisture	SPT-N	Comments
Hole #	(m)	ID#		(feet)	(m)	(m)	(%)	(blows / 300mm)	
40 4 47		0000	0:14 7:11		(11)		(70)		
19-147	228.62	\$309	Silt I III	21.0	6.4	222.2	12.5	31	
19-148	230.57	S303	Silt Till	31.0	9.4	221.1	15.8	75	
19-157	233.78	S338	Silt Till	36.0	11.0	222.8	8.2	19	
19-162	234 34	S396	Silt Till	33.5	10.2	224 1	92	28	
10 162	201.01	S405		26.0	11.0	227.1	0.2	0	
19-103	234.02	5405		30.0	11.0	223.0	9.7	0	
19-164	234.64	S414	Silt Till	31.0	9.4	225.2	19.2	13	
19-164	234.64	S415	Silt Till	36.0	11.0	223.7	9.7	17	
19-165	234.67	S424	Silt Till	35.0	10.7	224.0	9.0	15	
10 165	234 67	S125	Silt Till	40.0	12.2	222.5	12.2		sampler bouncing after 15 blows 150 mm
19-100	204.07	0420		40.0	12.2	222.5	12.2	400	sampler bouncing after 15 blows 150 min
19-166	234.94	S443	Silt I III	31.0	9.4	225.5	8.7	103	
19-166	234.94	S565	Silt Till	36.0	11.0	224.0	9.0	38	tested from base of casing advancer
19-166	234.94	S567	Silt Till	41.0	12.5	222.4	9.1	43	tested from base of casing advancer
19-167	234 59	S458	Silt Till	28.0	85	226.1	85		sampler bouncing after 81 blows / 180 mm
10-107	204.00	0450		20.0	0.0	220.1	0.5	70	sampler bouncing after of blows / foo min
19-167	234.59	5557	SIITTII	31.0	9.4	225.1	9.4	76	
19-167	234.59	S559	Silt Till	36.0	11.0	223.6	8.6	37	
19-167	234.59	S561	Silt Till	41.0	12.5	222.1	9.3	56	
10-168	234 97	S451	Silt Till	26.0	79	227.0	10.4	34	
10-100	204.07	0401		20.0	7.5	227.0	0.7	4.40	
19-168	∠34.9 <i>1</i>	5551	SIIT I III	31.0	9.4	∠∠5.5	8.5	146	
19-168	234.97	S553	Silt Till	36.0	11.0	224.0	9.3	75	
19-168	234.97	S555	Silt Till	41.0	12.5	222.5	9.1	73	
19-169	234 91	S464	Silt Till	26.0	7.9	227 0	7.4	112	
10 160	22/ 04	QEAE		21.0	0.4	 	0 <i>1</i>	116	
19-109	234.91	5545		31.0	9.4	225.5	0.4	110	
19-169	234.91	S547	Silt Till	36.0	11.0	223.9	8.5	153	
19-169	234.91	S549	Silt Till	41.0	12.5	222.4	9.7	71	
19-170	235.00	S471	Silt Till	26.0	7.9	227.1	6.8	119	
10 170	235.00	\$530	Silt Till	31 0	0.4	225.6	76	111	
19-170	235.00	3539		31.0	9.4	225.0	7.0	111	
19-170	235.00	S541	Silt I III	36.0	11.0	224.0	10.1	103	
19-170	235.00	S543	Silt Till	41.0	12.5	222.5	13.9	16	
19-171	234.99	S478	Silt Till	26.0	7.9	227.1	7.4	142	
10_171	23/ 00	\$533	Silt Till	31.0	Q /	225 5	<u>8</u> 1	107	
10-171	204.00	0505		00.0	3.4	220.0	0.1	74	
19-171	234.99	\$535	SILTII	36.0	11.0	224.0	8.4	/1	
19-171	234.99	S537	Silt Till	41.0	12.5	222.5	9.5	46	
19-172	235.06	S487	Silt Till	26.0	7.9	227.1	7.2	140	
19_172	235.06	S527	Silt Till	31.0	94	225.6	87	77	
40 470	200.00	0027		01.0	44.0	220.0	0.7	40	
19-172	235.06	5529	SILTII	36.0	11.0	224.1	9.0	48	
19-172	235.06	S531	Silt Till	41.0	12.5	222.6	8.6	114	
19-173	235.16	S496	Silt Till	21.0	6.4	228.8	13.7	6	
19-173	235 16	S497	Silt Till	24 0	73	227 8	8.0		sampler bouncing after 50 blows 150 mm
10 170	200.10	SE10		21.0	0.4	225.7	0.0	50	
19-173	235.10	3519		31.0	9.4	225.7	9.7	50	
19-173	235.16	S521	Silt Till	36.0	11.0	224.2	10.2	58	
19-173	235.16	S523	Silt Till	41.0	12.5	222.7	9.2		sampler bouncing after 29 blows 200 mm
19-239	234.08	S377	Silt Till	36.0	11.0	223.1	15.1	22	
10 240	225.11	S131		31.0	0.4	225.7	12.0	2	
19-240	200.11	0404		51.0	9.4	223.1	12.9	2	
19-240	235.11	S435	Silt Till	36.0	11.0	224.1	11.4	2	
20-244	235.22	S9	Silt Till	27.0	8.2	227.0	8.0	38	
20-244	235.22	S11	Silt Till	31.0	9.4	225.8	7.9	56	
20-244	235 22	<u>S13</u>	Silt Till	36 0	11 ∩	224.2	<u>9</u> 1	17	
20 244	200.22	600		26.0	7.0	227.2	0.1	25	
20-245	235.31	523	SILTII	20.0	7.9	227.4	9.1	30	
20-245	235.31	S25	Silt Till	31.0	9.4	225.9	9.1	29	
20-245	235.31	S27	Silt Till	36.0	11.0	224.3	8.7	24	
20-246	235.43	S34	Silt Till	21.0	6.4	229.0	7.8	28	
20 246	225 12	626		26.0	7.0	227.5	0 0		
20-240	235.45	330		20.0	7.9	227.5	0.9	20	
20-246	235.43	S38	Silt I III	31.0	9.4	226.0	4.5	22	
20-246	235.43	S40	Silt Till	36.0	11.0	224.5	9.9	8	
20-247	235.64	S46	Silt Till	21.0	6.4	229.2	7.9	41	
20-247	235.64	<u>S18</u>	Silt Till	26 0	70	227 7	03	15	
20-247	200.04	040		20.0	1.3	<u> </u>	9.0 4 4	40	e e renden herre die nacht a oo blaat 25
20-247	235.64	S50	Silt Fill	30.0	9.1	226.5	4.4		sampler bouncing after 32 blows 75 mm
20-247	235.64	S52	Silt Till	36.0	11.0	224.7		22	sampler blocked with stone
20-248	236.03	S56	Silt Till	16.0	4.9	231.2	7.9	77	
20-248	236.03	<u>857</u>	Silt Till	21 0	64	220 6	3.1	<u>1</u> 3	
20-240	200.00	007		21.0	0. 4	223.0	U. I		opplacheursien an easter fan
20-248	∠30.03	559	SIIT I III	∠5.U	0.1	228.4		-	sampler bouncing, no penetration
20-248	236.03	S61	Silt Till	31.0	9.4	226.6	8.0	65	
20-248	236.03	S63	Silt Till	36.0	11.0	225.1	9.6	21	
20-248	236.03	S65	Silt Till	<u>41</u> 0	12.5	223.5	77	154	
20 240	200.00	000		41.0 AE 0	12.0	220.0	· · · • •		complex hounging the next that
∠∪-248	∠30.U3	201	SILTI	43.0	13.1	ZZZ.3	ర.ు		sampler bouncing, no penetration

Table F1) Summary Of Standard Penetration Testing Results

APPENDIX G

SINTEF Soil Abrasion Testing (SAT), Cerchar Abrasivity Index (CAI) testing, Uniaxial Compressive Strength (UCS) testing, Petrographic Analysis

Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT) EMI # 539

Sample ID: Sand-1

1- Moisture condition:

2- Sample preparation:

3- Test piece hardness:

4- Flow rate (gr/min):

5- Test duration (min):

Average weight loss (gr):

6- Weight piece 1: Weight piece 2:

Air dried	Oven dried
Х	

Sieving	Crushing	As received
Х	Х	

Cutter steel	Other
55(HRC)	

1

Before test	After test	Weight loss
39.544	39.533	0.011
40.730	40.719	0.011
		0.0111

Notes: Test Performed By: JD, JWD Data Reduced By: JD

Picture of sample as tested

Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT) EMI # 539

Sample ID: Clay-1

1- Moisture condition:

2- Sample preparation:

3- Test piece hardness:

Air dried	Oven dried
Х	

Sieving	Crushing	As received
Х	Х	

Cutter steel	Other
55(HRC)	

4- Flow rate (gr/min):

- 5- Test duration (min):
- 6- Weight piece 1: Weight piece 2: Average weight loss (gr):
- 7- SAT value = 3.45

Test Performed By: JD, JWD

JD

Data Reduced By:

Picture of sample as tested

Date: 5/11/2021

80

Before test	After test	Weight loss
42.423	42.418	0.005
37.971	37.969	0.002
		0.00345

Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT) EMI # 539

Sample ID: Clay-2

1- Moisture condition:

2- Sample preparation:

3- Test piece hardness:

4- Flow rate (gr/min):

Air dried	Oven dried
Х	

Sieving	Crushing	As received
Х	Х	

After test

43.867

40.134

Cutter steel	Other
55(HRC)	

80

1

Before test

43.868

40.135

- 5- Test duration (min):
- 6- Weight piece 1: Weight piece 2: Average weight loss (gr):
- 7- SAT value =

1.4

Weight loss

0.002

0.001

0.0014

Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT) EMI # 539

Sample ID: Till-1

1- Moisture condition:

2- Sample preparation:

3- Test piece hardness:

4- Flow rate (gr/min):

5- Test duration (min):

Average weight loss (gr):

6- Weight piece 1: Weight piece 2:

Air dried	Oven dried
Х	

Sieving	Crushing	As received
Х	Х	

Cutter steel	Other
55(HRC)	

1

Before test	After test	Weight loss
44.487	44.482	0.005
46.140	46.132	0.008
		0.00625

Notes: Test Performed By: JD, JWD Data Reduced By: JD

Client: Dyregrov Robinson Inc. Project: Rutland Trunk Sewer Date: 5/11/2021

Colorado School of Mines

Soil Abrasion Testing (SAT) EMI # 539

Sample ID: Till-2

1- Moisture condition:

2- Sample preparation:

3- Test piece hardness:

4- Flow rate (gr/min):

5- Test duration (min):

Average weight loss (gr):

6- Weight piece 1: Weight piece 2:

Air dried	Oven dried
Х	

Sieving	Crushing	As received
Х	Х	

Cutter steel	Other
55(HRC)	

1

Before test	After test	Weight loss
42.707	42.698	0.009
40.049	40.042	0.008
		0.0082

Notes: Test Performed By: JD, JWD Data Reduced By: JD

Picture of sample as tested

Earth Mechanics Inst Client: Dyregrov Robinson I Project: Rutland Trunk Sew	itute Concerned	olorado School of Mines lining Engineering Department
Date: 4/27/21	Cerchar Abrasivity Test	ASTM D7625
Sample ID	Rock Type	Cerchar Abrasivity Index (CAIs)*
TH-19-168, C550 @ 27'	Metamorphic	3.24
TH 19-173, C518 @ 26'	Sedimentary	3.29
TH 20-244, C8 @ 24'	Metamorphic	3.36

* CERCHAR tests have been run on saw cut surface. No correction factor has been added to the results.

<u>Pictures of Sample Before and After</u> <u>Cerchar Abrasivity Index</u>

Client Name: Dyregrov Robinson Inc Project Name: Rutland Trunk Sewer EMI# 539 Date: 4/23/2021

Sample ID: TH-19-168, C550 @ 27'

After

<u>Pictures of Sample Before and After</u> <u>Cerchar Abrasivity Index</u>

Client Name: Dyregrov Robinson Inc Project Name: Rutland Trunk Sewer EMI# 539 Date: 4/23/2021

Sample ID: TH 19-173, C518 @ 26'

After

<u>Pictures of Sample Before and After</u> <u>Cerchar Abrasivity Index</u>

Client Name: Dyregrov Robinson Inc Project Name: Rutland Trunk Sewer EMI# 539 Date: 4/23/2021

Sample ID: TH 20-244, C8 @ 24'

After

Earth Mechanics Institute

Client: Dyregrov Robinson Inc

Project: Rutland Trunk Sewer

Colorado School of Mines

Mining Engineering Department

Date: 04/30/2021			Uniaxial Compressive Strength					ASTM D7012		
		Average	Average			Failure	Uniaxial Compressive Strength			
Sample ID	Rock Type	Length	Diameter	Length to Diameter	Density	Load	Failure Stress	UCS	(2:1)	Notes (Failure type)
		(in)	(in)	Katio	(lbs/ft ³)	(lbs)	σ _c (psi)	(psi)	(MPa)	
TH 19-173, C518 @ 26'	Sedimentary	5.417	2.487	2.2	165	68,873	14,172	14,433	99.5	Non - Structural
TH 20-244, C8 @ 24'	Metamorphic	5.545	2.469	2.2	167	139,797	29,199	29,830	205.7	Non - Structural

 $UCS_{2:1correction} = \frac{\sigma_c}{0.88 + 0.222(\frac{d}{l})}$

EARTH MECHANICS INSTITUTE

Mining Engineering Department, CSM

Uniaxial Compressive Strength - ASTM D7012

Client: Dyregrob Robinson Inc.					51		The second second
Project: Rutland Trunk Sewer					· 6/ 4		
	Location:	N/A			in the		
	Rock Type:	Sedimentary			- Car		
Rock Name: N/A				A SIL	San Det		
	Characteristics:	N/A					
Те	st Performed By:	JD, SS					1
	Date Tested:	4/20/2021			RUR	SA SA	
D	Data Reduced By:	MP			A TAN		a big i
	Date Reduced:	4/30/2021				dana'	-
	Core ID:	TH 19-173, C51	8 @ 26'	-	1 m		
	File Name:	TH 19-173, C51	8 @ 26'_UCS				
]	EMI Project No.:	539					
Core	Length	Core D	iameter		D	ensity	
in	cm	in	cm	- L/D Ratio	lb/ft ³	g/cm ³	-
5.417	13.76	2.487	6.32	2.2	165	2.65	-
Failure Load	Failure Stress	UCS	5 2:1	St	atic E	<i>a</i>	
lbf	psi	psi	MPa	ksi	GPa	Static v	Failure Mode
68,873	14,172	14,433	99.5	N/A	N/A	N/A	Non - Structural
P - '	Wave	S - V	Vave	Dyn	amic E		
ft/s	m/s	ft/s	m/s	ksi	GPa	— Dynamic v	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	-
	1	I	1		1		
20000							
30000							
25000							
23000							
20000							
20000							
(jsi)							
່າງ 15000							
tres							
Ń							
10000							
5000							
0 –							<u> </u>
0	50 100 150	0 200 250	300 350 40	0 450 50	0 550 600	650 700 7	50 800 850
			Т	ime (s)			

EARTH MECHANICS INSTITUTE

Mining Engineering Department, CSM Uniaxial Compressive Strength - ASTM D7012

Client: Dyregrob Robinson Inc. Project: Rutland Trunk Sewer Location: N/A Rock Type: Metamorphic Rock Name: N/A Characteristics: N/A Test Performed By: JD, SS Date Tested: 4/20/2021 Data Reduced By: MP Date Reduced: 4/30/2021 Core ID: TH 20-244, C8 @ 24' File Name: TH 20-244, C8 @ 24'_PP.dat EMI Project No.: 539

Core	Length	Core Diameter		viameter		ensity	
in	cm	in	cm	- L/D Katio	lb/ft ³	g/cm ³	
5.545	14.08	2.469	6.27	2.2	167	2.68	
Failure Load	Failure Stress	UCS 2:1		Static E		Static y	Failura Mada
lbf	psi	psi	MPa	ksi	GPa	Static V	Fanure Moue
139,797	29,199	29,830	205.7	N/A	N/A	N/A	Non - Structural
P - '	P - Wave S - Wave		S - Wave		mic E	Dynamic y	
ft/s	m/s	ft/s	m/s	ksi	GPa	Dynamic V	
N/A	N/A	N/A	N/A	N/A	N/A	N/A	

Petrographic Analysis of Selected Litharenitic Loose Sand Thin Section

Prepared for:

Brent Duncan Earth Mechanic Institute, Department of Mining Engineering Colorado School of Mines

Prepared by:

Ryan McLin McLin Petrographics

Table of Contents

PETRO	GRAF	PHIC ANALYSIS	3	
1	۱.	Introduction	3	
2	2.	Rock Types	3	
2	2.2.	Litharenitic Loose Sand	4	
3	3.	Thin Section Images	5	
ANALY	TICAL	PROCEDURES 1	5	
٦	Thin S	ection Analysis 1	5	
BIBLIO	BIBLIOGRAPHY			

McLin Petrographics 1034 Daria Dr Houston, TX 77079 832-349-5065

PETROGRAPHIC ANALYSIS

1. Introduction

The following report includes an assessment of rock type, mineralogy, and notable textural features. Rock type descriptions are accompanied by thin section photomicrographs and include five images of each sample in both plane-polarized light and crossed-polarized light and range in magnification from 2.5x, 5x, 10x, 20x, and 50x. Larger scale textural features are captured at low magnification, whereas details of the mineral matrix are characterized at the medium and high magnifications. Table 1 lists sample number, rock type and type of analyses performed. Analytical procedures are described at the end of this report.

2. Rock Types

The sedimentary rock type designation is based upon the classification schemes defined by Folk (1974). All rock types are characterized by texture or mineralogy as observed in thin section and accompanying hand sample.

Sample ID	Rock Type	Thin Section
539_Sand 1	Litharenitic Loose Sand	х
	TOTAL	3

Table 1. Petrologic Testing Matrix

2.2. Litharenitic Loose Sand

Megascopic Description: A bag of loose sand grains composed of quartz, feldspar, and rock fragments that are fine sand in size. The grains are dusty, brown in color, and likely coated with clay minerals.

Microscopic Description: The loose sand is further characterized as litharenitic (Folk, 1974) that is dominated by quartz, with subordinate amounts of rock fragments, and minor feldspar grains. Grain sizes were measured through image analysis of a sampling of grains taken from the lowest magnification image (TS_01). Results show an average grain size of fine sand according to the Wentworth (1922) grain size scale (average 223 microns; minimum 59 microns; maximum 485 microns). Grains are angular to subangular, moderately coated with clays, and moderately well sorted indicative of low textural maturity.

The mineralogy is dominated by monocrystalline quartz with minor polycrystalline quartz grains. Common sedimentary rock fragments consist of chert, limestone, and mudstone fragments. Rare glauconite pellets are also noted in thin section images TS_07 and TS_08. Uncommon igneous and metamorphic fragments are also observed. Minor feldspar grains include plagioclase and microcline variation of potassium feldspar. Clay minerals thinly coat most grains and comprise a mixture of illite, kaolinite, and chlorite imparting the dirty-brown color observed in the megascopic description. Accessories include opaque pyrite, magnetite and associated rare heavy minerals.

3. Thin Section Images

539_Sand_1_2_5x_ppl_001

Litharenitic Loose Sand

Thin Section Image 01. General overview of the loose sand shows a variety if angular to subangular sand grains that are fine sand-sized (average grain size 223 microns; minimum 59 microns; maximum 485 microns) according to the Wentworth grain size scale. Most of the grains are quartz and feldspar (white) with a subordinate amount of darker lithic fragments. Plane-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

539_Sand_1_2_5x_xpl_002	Litharenitic Loose Sand

Thin Section Image 02. The same image as in TS_001 but under crossed-polarized light illustrates abundant quartz grains at various states of optical extinction from the white to gray first order interference colors. Various rock fragments include abundant chert grains from the salt-and-pepper speckled appearance of microcrystalline quartz. Other darker lithics include mudstone and carbonate fragments. Cross-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

539_Sand_1_5x_ppl_003	Litharenitic Loose Sand

Thin Section Image 03. Greater magnification of the Litharenitic loose sand shows abundant angular grains of quartz and minor feldspar (white), with lesser amounts of darker brown to gray rock fragments. Most of the rock fragments are mudstone (Rm) or chert (Rc), but a small amount include limestone fragments (RI) composed of sparry calcite. Plane-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

McLin Petrographics 1034 Daria Dr Houston, TX 77079 832-349-5065 7

539_Sand_1_5x_xpl_004	Litharenitic Loose Sand

Thin Section Image 04. The same view as in TS_003 but under crossed polarized light reveals abundant angular and subangular grains dominated by quartz (white and gray). A smaller amount of feldspar grains are recognizable from their polysynthetic twinning of plagiolcase (Fp) and tartan twinning of microcline variant of potassium feldspar (Fk). The rock fragments noted in the previous image illustrate specked brown and gray colors. Cross-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

539_Sand_1_10x_ppl_005	Litharenitic Loose Sand

Thin Section Image 05. Closer inspection of the Litharenitic loose sand better illustrates the high angularity of the grains indication a low textural maturity of the sand. Also note the thin clay coatings on most grains (arrows) that are likely composed of illite, kaolinite, and chlorite. Plane-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

539_Sand_1_10x_xpl_006	Litharenitic Loose Sand

Thin Section Image 06. The same view as TS_05 but under crossed-polarized light illustrating the variety of lithic fragments from salt-and-pepper chert (Rc) to limestone fragments (RI) that show both sparry and microcrystalline calcite. Other fragments include those of minor volcanic and metamorphic origin. Cross-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

539_Sand_1_20x_ppl_007	Litharenitic Loose Sand

Thin Section Image 07. More magnified view of the Litharenitic loose sand illustrates two rare rounded glauconite pellets (G) between and limestone fragment (RI) composed of sparry calcite crystals. Plane-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

539_Sand_1_20x_xpl_008 Litharenitic Loose Sand

Thin Section Image 08. The same view as in TS_07 but under crossed-polarized light better illustrates the glauconite pellets from the dull green-and-yellow speckled color. The prominent quartz grains illustrate first order white to gray interference colors at various states of optical extinction. A small chert fragment is noted at lower-right from its speckled salt-and-pepper pattern. Cross-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

McLin Petrographics 1034 Daria Dr Houston, TX 77079 832-349-5065 12

539_Sand_1_50x_ppl_009	Litharenitic Loose Sand

Thin Section Image 09. Highest magnification detail of the Litharenitic loose sand illustrates quartz and feldspar grains that are coated with a small amount of brown clays likely composed of illite, kaolinite, and chlorite. A small opaque mineral at left is likely pyrite or magnetite. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

539_Sand_1_50x_xpl_010	Litharenitic Loose Sand

Thin Section Image 10. The same view as TS_09 under crossed-polarized light illustrates the tartan twinning of microcline variation of potassium feldspar. Note that the clays that coat the grains show bright white to yellow interference colors that are characteristic of illite. Cross-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

15

ANALYTICAL PROCEDURES

Thin Section Analysis

The loose sand sample was put into an epoxy mold, cut, surfaced, mounted to a standard (24 mm × 46 mm) thin section slide, and ground to a thickness of approximately 30 microns by National Petrographic. The samples were then shipped to Ryan McLin, sole proprietor of McLin Petrographics. The prepared thin section was examined and digitally imaged at various magnifications using a Carl Zeiss Imager.A2m polarizing binocular microscope equipped with an AxioCam MRc digital camera, UV light source, and various UV filters. Five images at increasing steps in magnification were collected in both plane-polarized light and in crossed-polarized light to observe mineral characteristics and identifying features.

BIBLIOGRAPHY

Folk, R.L., 1974, *Petrology of Sedimentary Rocks*: Hemphill Publishing Co., Austin, TX Wentworth, C.K., 1922, A scale of grade and class terms for clastic sediments: *J. Geol.*, **30**, 377-392.

Petrographic Analysis of Selected Igneous (Plutonic) and Sedimentary Rock Thin Sections

Prepared for:

Brent Duncan Earth Mechanic Institute, Department of Mining Engineering Colorado School of Mines

Prepared by:

Ryan McLin McLin Petrographics

Table of Contents

PETROGR	APHIC ANALYSIS	
1.	Introduction	
2.	Rock Types	
2.1.	Alkali-Feldspar Granite	
2.2.	Limestone (Crystalline Carbonate/Sparstone)	5
2.2.	Tonalite	5
3.	Thin Section Images	7
ANALYTIC	AL PROCEDURES	37
Thin	Section Analysis	37
BIBLIOGR	АРНҮ	

PETROGRAPHIC ANALYSIS

1. Introduction

The following report includes an assessment of rock type, mineralogy, and notable textural features. Rock type descriptions are accompanied by thin section photomicrographs and include five images of each sample in both plane-polarized light and crossed-polarized light and range in magnification from 2.5x, 5x, 10x, 20x, and 50x. Larger scale textural features are captured at low magnification, whereas details of the mineral matrix are characterized at the medium and high magnifications. Table 1 lists sample number, rock type and type of analyses performed. Analytical procedures are described at the end of this report.

2. Rock Types

Igneous rock type designations of samples that are shown in Table 1 are named according to the QAPF classification scheme (Streckeisen, 1974; La Maitre, 2002). The sedimentary rock type designation is based upon the classification schemes defined by Dunham (1962) and Write (1992). All rock types are characterized by texture or mineralogy as observed in thin section and accompanying hand sample.

Sample ID	Rock Type	Thin Section
TH19-168, C550@27'	Alkali-Feldspar Granite	х
TH19-173, C518@26'	Limestone (Crystalline Carbonate/Sparstone)	х
TH20-244, C8@24'	Tonalite	х
	TOTAL	3

2.1. Alkali-Feldspar Granite

Megascopic Description: A dense, pink, black, and gray colored, phaneritic, medium-grained, plutonic igneous rock consisting of quartz, feldspar, biotite, and muscovite.

Microscopic Description: The texture in the alkali-feldspar granite is phaneritic with individual crystals coarse enough to be seen by the unaided eye. Crystals measure between 1-5 mm and subdivide the texture into the medium grained category. The rock classification is determined using the QAPF classification of igneous rocks (Streckeisen, 1974; La Maitre, 2002). The mineralogy is dominated by polycrystalline quartz (50% by visual estimate; 52.6% modal) and alkali feldspar (40% by visual estimate; 42.1% modal). Minor minerals include plagioclase feldspar (5% by visual estimate; 5.3% modal), biotite and hornblende (4%), with rare accessories (1%) comprising of sericite, chlorite, muscovite, epidote, zircon, apatite, and tourmaline. The polycrystalline quartz is colorless, shows low relief, has a frequent wavy or undulose extinction, and exhibits low, first-order white to gray interference colors under crossed-polarized light. The alkali feldspar that is most common is microcline. Microcline is colorless, of low relief, and displays first-order gray to white interference colors under cross-polarized light. The microcline also exhibits common spindle-shaped or Scotch-plaid twinning at some orientations. It frequently includes perthite or blob-like intergrowths of sodic-plagioclase indicative of unmixing. Plagiolcase is the subordinate feldspar present in the alkali-feldspar granite and is colorless, exhibits first-order white interference colors, and has a unique polysynthetic twinning giving a striped appearance under cross-polarized light. Portions of the plagiolcase feldspar are altered to sericite, which is chemically identical to muscovite mica. Some plagioclase crystals include worm-like quartz intergrowths called myrmekite. The myrmekite is suggested to form in slowly crystallizing melts that undergo tectonic strain (Simpson & Wintsch, 1989). It is possible that the undulatory extinction of the quartz could contribute to the evidence of strain on the rock. The biotite is of particular interest in that it includes zircons and apatite crystals entrained within the mineral. In-turn, they have black pleochroic radiation halos that indicate uranium and/or thorium within the crystal lattice of the zircon or apatite crystals. The rare, high-relief epidote that was observed (Thin Section Images 5-6) is partially altered to chlorite.

2.2. Limestone (Crystalline Carbonate/Sparstone)

Megascopic Description: A dense, light gray to white in color, of low porosity, sedimentary rock consisting of calcite.

Microscopic Description: The limestone is composed primarily of finely crystalline (15-30 microns in size) sparry calcite and microcrystalline calcite or micrite thar appear interlocking in a tight matrix. The depositional texture in the limestone is unrecognizable and is therefore characterized as a crystalline carbonate according to Dunham (1962) or as a sparstone according to Write (1992), which is an obliterative category with the original fabric being overprinted by diagenesis. The minerology consists of calcite (96% by visual estimate), with minor accessories including calcareous fossil crinoid fragments (1%), fine silt-sized quartz and feldspar grains (1%), dolomite rhombs (1%), and scattered pyrite flecks and framboids (1%). There is evidence of thin organic stringers that are likely insoluble bitumen remnants and not stylolites as they do not appear to have a characteristic zig-zag form parallel to bedding indicative of pressure solution seams (since bedding cannot be recognized anyway).

2.2. Tonalite

Megascopic Description: A dense, light to dark gray and black in a salt-and-pepper appearance, phaneritic, medium-grained, plutonic igneous rock consisting of quartz, feldspar, biotite, and muscovite.

Microscopic Description: The texture in the tonalite is phaneritic with individual crystals coarse enough to be visible unaided by the human eye. Crystals measure between 1-5 mm and subdivide the texture into the medium grained category. The rock classification is determined using the QAPF classification of igneous rocks (Streckeisen, 1974; La Maitre, 2002). The mineralogy is dominated by polycrystalline quartz (45% by visual estimate; 55.6% modal), plagioclase feldspar (35% by visual estimate; 43.2% modal), biotite (12% by visual estimate), with rare microcline alkali feldspar (1% by visual estimate; 1.2% modal). Other accessories include hornblende (1%), muscovite (1%), sericite (1%), calcite (1%), olivine (1%), pyroxene (1%), and magnetite (1%). As in the alkali feldspar rock, polycrystalline quartz is the most common mineral. Quartz is colorless, shows low relief, has a frequent wavy or undulose extinction, and exhibits low, first-order white to gray interference colors under crossed-polarized light. Plagioclase feldspar is second in abundance, colorless, and exhibits first-order white interference colors, and has a unique polysynthetic twinning giving a striped appearance under cross-polarized light. Many of the

McLin Petrographics 1034 Daria Dr Houston, TX 77079 832-349-5065 5

plagioclase feldspar crystals are partially altered to sericite or calcite. Biotite is the third-most common mineral in the tonalite and is light-to dark brown or green in color, pleochroic, of moderate-relief, has one excellent cleavage, and often shows mottled or bird's eye extinction under crossed-polarized light. The biotite also includes rare, low-relief apatite crystals that show small pleochroic radiation halos indicative of uranium and/or thorium in the crystal lattice. Strong interference colors range up to second-order red and pink. Olivine (Thin Section Images 25-26) is easily visible from its high-relief, and its high, second-order blue, pink, and orange interference colors.

TH19-168_C550@27'_2_5x_ppl_001 Alkali-Feldspar Granite

Thin Section Image 01. Alkali-Feldspar Granite taken under low magnification shows pleochroic biotite mica (b) widely scattered among coarse-grained feldspar and quartz crystals (white; low relief). Plane-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

McLin Petrographics 1034 Daria Dr Houston, TX 77079 832-349-5065 7

TH19-168_C550@27'_2_5x_xpl_002

Alkali-Feldspar Granite

Thin Section Image 02. The same photo of the alkali-feldspar granite as TS_001 but taken under crossed polarized light illustrates crosshatch pattern of abundant K-feldspar – microcline (Fm) at various states of optical extinction. Note the worm-like perthite in the large microcline crystal at lower-left. The perthite indicates unmixing of the feldspar and exhibits sodic-plagiolcase within a potassic alkali-feldspar. Plagioclase feldspar is subordinate in abundance to alkali feldspar in the alkali-feldspar granite. Polycrystalline quartz (Qtz) is common and exhibits low first order gray to white interference colors. The biotite exhibits a wide variety of strong second-order interference colors up to pink and red. Cross-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

TH19-168_C550@27'_5x_ppl_003	Alkali-Feldspar Granite

Thin Section Image 03. More magnified view of the alkali-feldspar granite illustrates coarse-grained quartz crystals (Qtz) adjacent to green and brown biotite mixed with hornblende (both are pleochroic). At right is a twinned plagiolcase feldspar (Fp). Plane-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

TH19-168_C550@27'_5x_xpl_004

Alkali-Feldspar Granite

Thin Section Image 04. The same image as TS_003 but taken under crossed-polarized light better illustrates the prominence of the undulose extinction in the polycrystalline quartz (Qtz) and the polysynthetic twinning of the plagioclase feldspar (Fp). Note the small plagioclase crystal at lower-center exhibits worm-like myrmekite intergrowths of quartz. It is suggested that myrmekite occurrence is often associated with strain features in granitic rocks. The adjacent undulose extinction of the quartz crystals could also indicate tectonic strain in addition to the myrmekite formation during cooling of the magma body. Cross-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

TH19-168_C550@27'_10x_ppl_005	Alkali-Feldspar Granite

Thin Section Image 05. Greater magnification view of the alkali-feldspar granite exhibits smaller crystals of biotite (b) and a rare epidote (high-relief) hosted by a larger microcline variation of alkali-feldspar (Fm; white, low-relief). Note the small zircons hosted by the biotite. They, in turn, show pleochroic radiation halos likely from uranium or thorium in the crystal. Note the epidote is almost entirely altered to green chlorite (chl). Plane-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

TH19-168_C550@27'_10x_xpl_006	Alkali-Feldspar Granite

Thin Section Image 06. The same view as in TS_005 but taken under crossed-polarized light to emphasize the birds-eye extinction of the biotite and the upper third-order interference colors of the epidote that is partially altered to chlorite. A low-relief muscovite mica (m) overlaps the biotite at top. At center is a plagiolcase feldspar inclusion that is partially altered to bright sericite (s). All these smaller mineral crystals are enclosed in a larger microcline alkali-feldspar (Fm). Cross-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

TH19-168_C550@27'_20x_ppl_007	Alkali-Feldspar Granite

Thin Section Image 07. Detailed view of the alkali-feldspar granite emphasizes a pleochroic biotite crystal that is medium-todark brown and hosts smaller crystals of zircons and apatite crystals. Note the zircons have high relief, whereas the apatite crystals are lower in relief. Both exhibit dark radiation halos indicative of uranium and/or thorium in the crystal lattice. Planepolarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

McLin Petrographics 1034 Daria Dr Houston, TX 77079 832-349-5065 13

TH19-168_C550@27'_20x_xpl_008	Alkali-Feldspar Granite
-------------------------------	-------------------------

Thin Section Image 08. The same view of TS_007 but under crossed-polarized light illustrates the strong interference colors of the brown biotite that range up to second-order pink and red. Crossed-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

TH19-168_C550@27'_50x_ppl_009	Alkali-Feldspar Granite

Thin Section Image 09. Highest magnification view of the alkali-feldspar granite exhibits prismatic green tourmaline crystals that are hosted by a plagiolcase feldspar crystal with associated myrmekite intergrowths of quartz. Plane-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

TH19-168_C550@27'_50x_xpl_010 Alkali-Feldspar Granite

Thin Section Image 10. The same image as TS_009 but under crossed-polarized light exhibits the worm-like myrmekite of quartz intergrowths (white) against the host plagiolcase feldspar (currently optically extinct). Note the muscovite mica at top that exhibits bright second order interference colors of blue, green, yellow, and red. Cross-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

TH19-173_C518@26'_2_5x_ppl_011 Lin

Limestone (Crystalline Carbonate/Sparstone)

Thin Section Image 11. General overview of a limestone. Depending upon the classification scheme, this rock can be classified as a crystalline carbonate (Dunham, 1962) or as a sparstone (Write, 1992). The matrix is composed of interlocking calcite crystals that range in size from 15-30 microns (finely crystalline). A minor amount of calcareous shell fragments includes broken pieces of crinoid plates (Fc). At bottom are thin black stringers that are interpreted to be insoluble bitumen or some form or organic matter and not stylolites. Plane-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

TH19-173_C518@26'_2_5x_xpl_012	Limestone (Crystalline
	Carbonate/Sparstone)

Thin Section Image 12. The same image as in TS_011 but under crossed-polarized light illustrates abundant interlocking calcite crystals, the crinoid plate fragment (Fc), and the organic stringers at the bottom of the image. Cross-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

TH19-173_C518@26'_5x_ppl_013	Limestone (Crystalline Carbonate/Sparstone)
Π19-173_C318@20_3λ_ppi_013	Carbonate/Sparstone)

Thin Section Image 13. Greater magnification of the limestone shows sparry calcite cement crystals that are finely crystalline that are cemented together into an interlocking matrix. Note the porous vugs that show the blue dye added to the thin section epoxy. At center and lower right are more of the organic stringers mentioned previously. Plane-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

Thin Section Image 14. The same view as in TS_013 but under crossed-polarized light better illustrates the high order, whiteedged interference colors of calcite. The vuggy areas will appear isotropic from the background glass slide. Cross-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

TH19-173_C518@26'_10x_ppl_015	Limestone (Crystalline Carbonate/Sparstone)

Thin Section Image 15. Higher magnification of the limestone shows the matrix of interlocking sparry calcite that hosts minor minerals such as opaque pyrite (py) and zoned dolomite rhombohedral crystals (dol). Plane-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

TH19-173_C518@26'_10x_xpl_016 Limestone (Cr	rystalline
Carbonate/Sp	parstone)

Thin Section Image 16. The same view as TS_015 but under crossed-polarized light better illustrates the high-order interference colors, the variable relief, and the rhombohedral cleavage of the calcite. Cross-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

TH19-173_C518@26'_20x_ppl_017	Limestone (Crystalline Carbonate/Sparstone)
1H19-173_C518@26_20x_pp1_017	Carbonate/Sparstone)

Thin Section Image 17. Closer inspection of the limestone centers upon a partially dissolved fossil fragment or rip-up class that exhibits intraparticle porosity as shown from the partially dissolved rhombohedral crystal shapes and blue-dye background. Plane-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

TH19-173_C518@26'_20x_xpl_018	Limestone (Crystalline Carbonate/Sparstone)

Thin Section Image 18. The same view as in TS_017 but under crossed-polarized light better illustrates the unit extinction of the unidentified fragment, possible a crinoid plate. Note the finely crystalline calcite crystals that appear in front of the crinoid plate in the third dimension and are smaller than the 30-micron thickness of the slide. Cross-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

TH19-173_C518@26'_50x_ppl_019	Limestone (Crystalline Carbonate/Sparstone)

Thin Section Image 19. Highest magnification detail of the limestone focusses on a vuggy intercrystalline pore space between sharp, euhedral crystals of sparry calcite. Plane-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

TH19-173_C518@26'_50x_xpl_020	Limestone (Crystalline Carbonate/Sparstone)

Thin Section Image 20. The same view as TS_019 under crossed-polarized light illustrates the extreme birefringence, rhombohedral cleavage, and high-order interference colors of the calcite crystals. Cross-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

TH20-244_C8@24'_2_5x_ppl_021	Tonalite

Thin Section Image 21. Low magnification overview of a tonalite shows an abundant amount of pleochroic biotite with subordinate hornblende (light to dark brown) among fine to medium-grained polycrystalline quartz and plagiolcase feldspar (white; low relief) Plane-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

TH20-244_C8@24'_2_5x_xpl_022

Tonalite

Thin Section Image 22. The same view as in TS 21 but under crossed polarized light better illustrates the abundant polycrystalline quartz (45% by visual estimate) from the low-first order grey and white interference colors and undulose extinction. Plagioclase feldspar is also common, but in lesser amounts (35% by visual estimate). Biotite (15% by visual estimate) is widespread and exhibits strong birefringence with up to middle third-order interference colors of yellow, green, pink, and red. Cross-polarized light. 2.5x Magnification. Field of View 5.5 mm. Scale bar = 1000 microns or 1 mm.

TH20-244_C8@24'_5x_ppl_023	Tonalite

Thin Section Image 23. More magnified view of the tonalite exhibits fine to medium-grained polycrystalline quartz and plagioclase feldspar (white; low relief), abundant biotite and lesser amounts of hornblende. Note the biotite crystal at center hosts radioactive apatite and zircon crystals from the black radiation halos. Plane-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

TH20-244_C8@24'_5x_xpl_024	Tonalite

Thin Section Image 24. The same view as the previous image but under crossed-polarized light shows abundant polycrystalline quartz crystals (white to gray interference colors; undulose extinction) among common biotite and subordinate hornblende (pink and green interference colors; birds eye extinction). At left are two plagioclase feldspar grains (Fp) identified from their characteristic polysynthetic twinning. Cross-polarized light. 5x Magnification. Field of View 2.82 mm. Scale bar = 500 microns or 0.5 mm.

TH20-244_C8@24'_10x_ppl_025	Tonalite

Thin Section Image 25. Medium magnification view of the tonalite shows abundant crystals of white polycrystalline quartz and plagiolcase feldspar that host subordinate amounts of light to dark-brown biotite and hornblende. Other accessory minerals include opaque magnetite (M), high-relief olivine (O), and rare apatite crystals enclosed in biotite (arrow). Plane-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

TH20-244_C8@24'_10x_xpl_026

Tonalite

Thin Section Image 26. The same image as in TS25 but under crossed-polarized light illustrates the high second-order blue, pink, and orange interference colors of the olivine (O) and the abundant polycrystalline quartz (white to gray) and biotite (green to pink). A plagioclase feldspar at right (Fp) exhibits partial replacement by bright sericite. Cross-polarized light. 10x Magnification. Field of View 1.46 mm. Scale bar = 200 microns or 0.2 mm.

Brent Duncan, Earth Mechanic Institute, Colorado School of Mines Petrographic Analysis of Igneous (Plutonic) and Sedimentary Rock Thin Sections

TH20-244_C8@24'_20x_ppl_027	Tonalite

Thin Section Image 27. Highly magnified view of the tonalite illustrates a microcline variation of alkali-feldspar (Fm) that is replaced by plagiolcase feldspar (Fp). The plagiolcase, in-turn, is partially replaced by sericite and calcite cement (dark gray flecks). At top is polycrystalline quartz (Qtz). Plane-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

Brent Duncan, Earth Mechanic Institute, Colorado School of Mines Petrographic Analysis of Igneous (Plutonic) and Sedimentary Rock Thin Sections

TH20-244_C8@24'_20x_xpl_028

Tonalite

Thin Section Image 28. The same image as TS27 but under crossed-polarized light better illustrates the difference in the microcline (Fm) and the plagiolcase (Fp). Polycrystalline quartz (Qtz) is adjacent to the feldspar. Accessory calcite and sericite are rare and partially replaces the plagioclase (bright interference colors). Cross-polarized light. 20x Magnification. Field of View 0.72 mm. Scale bar = 100 microns or 0.1 mm.

TH20-244_C8@24'_50x_ppl_029	Tonalite

Thin Section Image 29. Highest magnification view of the tonalite emphasizes a light green pleochroic hornblende crystal adjacent to polycrystalline quartz crystals (white). Plane-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

1H20-244_Co@24_50x_xpi_050		TH20-244_C8@24'_50x_xpl_030
----------------------------	--	-----------------------------

Tonalite

Thin Section Image 30. The same view as TS29 but under crossed-polarized light illustrates the hornblende crystal from the deep blue interference colors (middle second-order). Cross-polarized light. 50x Magnification. Field of View 0.28 mm. Scale bar = 50 microns or 0.05 mm.

ANALYTICAL PROCEDURES

Thin Section Analysis

Core samples were cut, surfaced, mounted to standard (24 mm × 46 mm) thin section slides, and ground to a thickness of approximately 30 microns by National Petrographic. The samples were then shipped to Ryan McLin, sole proprietor of McLin Petrographics. The prepared thin sections were examined and digitally imaged at various magnifications using a Carl Zeiss Imager.A2m polarizing binocular microscope equipped with an AxioCam MRc digital camera, UV light source, and various UV filters. Five images at increasing steps in magnification were collected for each thin section in both plane-polarized light and in crossed-polarized light to observe mineral characteristics and identifying features.

BIBLIOGRAPHY

Dunham, R.J., 1962. Classification of carbonate rocks according to depositional texture. In: Classification of Carbonate Rocks (Ed. W.E. Ham), Am. Assoc. Pet. Geol. Mem., 1, 108–121.

Le Maitre, R. W. (ed.) 2002. Igneous Rocks. A Classification and Glossary of Terms. Recommendations of the International Union of Geological Sciences Sub commission on the Systematics of Igneous Rocks, 2nd ed. xvi + 236 pp. Cambridge, New York, Melbourne

Simpson, C., and Wintsch, R.P., 1989. Evidence for deformation-induced K-feldspar replacement by myrmekite: Journal of Metamorphic Geology, v. 7, p. 261–275, https://doi.org/10.1111/j.1525-1314.1989.tb00588.x.

Streckeisen, A., 1974. Classification and Nomenclature of Plutonic Rocks. Geologische Rundschau, 63, 773-786.

Wright, V.P, 1992. A revised classification of limestones. In: Sedimentary Geology v.76, Issues 3–4, March 1992, 177-185

APPENDIX H

Ferry Road and Riverbend CSR – Rutland Trunk Sewer - Geophysical Survey (Tetra Tech July 26, 2021, Issued for Use)

July 26, 2021

Tetra Tech Inc. 400, 161 Portage Avenue Winnipeg, MB R3B 0Y4 ISSUED FOR USE FILE: ENG.GEOP03198-03 Via Email: Kirby.McRae@tetratech.com

Attention: Kirby McRae, P.Eng., Senior Design Lead

Subject: Ferry Road and Riverbend CSR – Rutland Trunk Sewer – Geophysical Survey Winnipeg, MB

1.0 INTRODUCTION

Tetra Tech Canada Inc. (Tetra Tech) was retained by the City of Winnipeg to conduct geophysical profiling along Rutland Street for the proposed Ferry Road and Riverbend Combined Sewer Relief (CSR) tunnel in Winnipeg, MB. Previous geotechnical investigations and sewer projects in the area have identified the likelihood of hard glacial tills being encountered along an 800 m section of the alignment between Bruce Avenue and Silver Avenue.

Geophysical seismic data was collected along approximately 2 km of the alignment, including the noted 800 m section, in order to identify the location and elevation of harder subsurface material that could be problematic for tunnelling construction.

2.0 SEISMIC METHODOLOGY

2.1 Seismic Methodology

Two different seismic methods were utilized for this project: seismic refraction and multi-channel analysis of surface waves (MASW). Both data sets can be collected at the same time but use different properties of seismic wave train record.

Seismic refraction investigations rely on the generation of acoustic waves from a source and measurement of the ground response using acoustic receivers, called geophones, at a known geometry. The relative geometry of the source and receiver locations are known and can be related to the travel time of the acoustic wave travelling to each receiver. By identifying the first arrival of the compression (P-) wave, a modelled velocity cross-section can be generated.

Multichannel analysis of surface waves (MASW) is an alternate seismic technique based on the measurement of surface waves, specifically the dispersion characteristics of retrograde motion Rayleigh waves as these waves travel past the geophones. MASW data is analyzed by phase velocity-frequency based transformation. The dispersion curves are interpreted and solved through a least squares modelling process to obtain a one-dimensional vertical model of the average shear wave (S-wave) velocity across the seismic line at various depths, at each spread location. The MASW source can either be an active source (such as a sledgehammer striking a metal plate) or a passive source (such as ambient site noise caused by construction activities or traffic). MASW is often collected at

the same time as refraction data and provides additional information along the profile to assist with interpretation of the refraction data.

A detailed description of seismic refraction and MASW methodology, including limitations, is included in Appendix B.

3.0 DATA COLLECTION

Seismic data was collected by David McBean, P.Geo. (Alberta), and Jordan Augruso, P.Geo. (Alberta), between August 16 and August 18, 2020. The seismic system used for the survey was a Geometrics' 24-channel seismograph with 4.5 Hz geophones at a 1 m spacing. A sledgehammer striking a metal plate was used as the seismic source. Data was collected using an off-end shot location of 10 m.

The geophones were mounted on a landstreamer, with ground coupling achieved through a metal plate. This setup allows the geophones to be moved along the line efficiently, increasing the speed of data collection. The survey setup is shown below in Photo 1.

Photo 1 – Landstreamer setup

Data was collected along a profile approximately 2 km in length, extending from the Assiniboine River at the south end of the alignment to the Winnipeg James Armstrong Richardson International Airport at the north end. Seismic data was collected at 5 m increments along the profile. No data was collected on active roadways; therefore, the seismic profile contains four gaps in data coverage at Portage Avenue, Bruce Avenue, Ness Avenue, and Silver Avenue. Figure 1 provides a plan view site map of the survey area.

Data was collected adjacent to Rutland Street, which remained open to traffic at the time of the survey. The noted avenues along the survey alignment likewise remained open to traffic at the time of the survey. The field crew timed collection of individual seismic data files to occur when there was minimal adjacent traffic, or when traffic was paused at stop lights, but in busier areas such as at between Bruce Avenue and Silver Avenue, roadway traffic did contribute noise to the dataset.

Geophone locations were surveyed by Tetra Tech using an RTK GPS system to provide position and elevation information.

4.0 DATA PROCESSING

4.1 Refraction

The data was processed using Geometrics' SeisImager seismic processing software. The software was used to filter and gain the data, select the first arrivals, and assign layers to the travel times and perform a time-term inversion. The results from the time-term inversion were used as the initial model for tomographic inversions.

Due to traffic noise, the refraction seismic data had a low signal to noise ratio in some locations, making it challenging to pick the P-wave first arrivals. In these areas, MASW was used as the primary method for interpretation.

4.2 MASW

The data was also processed using MASW methods, which involves creating a plot of the phase velocity vs. frequency, called a dispersion image. By selecting the highest amplitude energy at the lowest phase velocities (the fundamental mode), a dispersion curve is determined. In general, the data was sell-suited to the MASW method and yielded a well-defined phase dispersion curve. The MASW data was processed and inverted in Kansas Geological Survey's SurfSeis software. The back calculation of shear wave (S-wave) velocity was performed using an iterative inversion least-squares approach. MASW is less sensitive to background noise, well-suited in urban environments and works well in unconsolidated soils.

5.0 RESULTS AND INTERPRETATION

Figures 2 and 3 provide an interpreted seismic profile along the surveyed alignment. In general, the seismic data agrees well with the available borehole information along the entire alignment. Primarily the modelled S-wave velocity was used to map the till interface, with P-wave velocities being used to help refine the interpretation in non-traffic areas.

The modelled S-wave contours have been shown on the figures along with an interpreted top of till interface, simplified borehole data, and proposed tunnel elevation. Locations along the alignment where either no data was collected (for example on roadways), or where the data quality and thus confidence in the data was poor have been shown as dashed lines (inferred).

The till interface fits well with a modelled S-wave velocity of between 190 m/s to 250 m/s and a modelled P-wave velocity of 1,000 m/s. The S-wave velocity used for the till interface changes as one moves north, away from the Assiniboine River. Since till is a geological deposition description, the actual composition of the material can, and does, change over the course of the alignment both in terms of material composition, density (N blow counts), and water content, which will affect seismic velocities.

From approximately 50 m north of the Assiniboine River (profile chainage 0 m) to the running track in Bourkevale Park (profile chainage 220 m), the till interface correlates better with a higher modelled S-wave velocity (220 m/s to 250 m/s) than the rest of the alignment. This could be due to the higher silt and less clay composition in the till relative to the rest of the alignment.

Over the running track (profile chainage 250 m) to Portage Avenue, the till is interpreted to be at its deepest point, over 12 m from surface, and is close to the modelling extent of the data. The engineered surface of the track does change the dispersion behavior of the surface waves and there is evidence of a velocity reversal (fast layer over a slow layer) in the refraction data that prevents accurate depth modelling from the refraction data set. The till interface correlates better with a modelled S-wave velocity of approximately 200 m/s.

From Portage Avenue to the end of the alignment past Silver Avenue, the till interface correlates well with a slower modelled S-wave velocity between 190 m/s and 200 m/s. The till interface elevation is shown as a gradual ascent, with several localized crests and troughs, to a high point around profile chainage 1,900 m past Silver Avenue. The till interface is at its shallowest point of only about 4 m from the surface at this furthest surveyed chainage.

6.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of City of Winnipeg and their agents. Tetra Tech Canada Inc. (operating as Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than City of Winnipeg or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

7.0 CLOSURE

We trust this document meets your present requirements. If you have any questions or comments, please contact the undersigned.

Tetra Tech Canada Inc.

FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03 FILE: ENG.GEOP03198-03

Prepared by:

Patrick Finlay, P.Geoph. Manager, Senior Geophysicist Engineering & Environmental Geophysics Direct Line: 587.460.3506 Patrick.Finlay@tetratech.com

/sd

Reviewed by: Neil Parry, P.Geo., MBA Director, Geospatial Imaging, Geophysicist Engineering & Environmental Geophysics Direct Line: 587.460.3598 Neil.Parry@tetratech.com

FIGURES

- Figure 1 Seismic Data Coverage Overview Map
- Figure 2 Seismic Profile MASW Refraction Data Segment 1
- Figure 3 Seismic Profile MASW Refraction Data Segment 2

APPENDIX A

TETRA TECH'S LIMITATIONS ON USE OF THIS DOCUMENT

GEOPHYSICAL

1.1 USE OF DOCUMENT AND OWNERSHIP

This document pertains to a specific site, a specific development, and a specific scope of work. The document may include plans, drawings, profiles and other supporting documents that collectively constitute the document (the "Professional Document").

The Professional Document is intended for the sole use of TETRA TECH's Client (the "Client") as specifically identified in the TETRA TECH Services Agreement or other Contractual Agreement entered into with the Client (either of which is termed the "Contract" herein). TETRA TECH does not accept any responsibility for the accuracy of any of the data, analyses, recommendations or other contents of the Professional Document when it is used or relied upon by any party other than the Client, unless authorized in writing by TETRA TECH.

Any unauthorized use of the Professional Document is at the sole risk of the user. TETRA TECH accepts no responsibility whatsoever for any loss or damage where such loss or damage is alleged to be or, is in fact, caused by the unauthorized use of the Professional Document.

Where TETRA TECH has expressly authorized the use of the Professional Document by a third party (an "Authorized Party"), consideration for such authorization is the Authorized Party's acceptance of these Limitations on Use of this Document as well as any limitations on liability contained in the Contract with the Client (all of which is collectively termed the "Limitations on Liability"). The Authorized Party should carefully review both these Limitations on Use of this Document and the Contract prior to making any use of the Professional Document. Any use made of the Professional Document by an Authorized Party constitutes the Authorized Party's express acceptance of, and agreement to, the Limitations on Liability.

The Professional Document and any other form or type of data or documents generated by TETRA TECH during the performance of the work are TETRA TECH's professional work product and shall remain the copyright property of TETRA TECH.

The Professional Document is subject to copyright and shall not be reproduced either wholly or in part without the prior, written permission of TETRA TECH. Additional copies of the Document, if required, may be obtained upon request.

1.2 ALTERNATIVE DOCUMENT FORMAT

Where TETRA TECH submits electronic file and/or hard copy versions of the Professional Document or any drawings or other project-related documents and deliverables (collectively termed TETRA TECH's "Instruments of Professional Service"), only the signed and/or sealed versions shall be considered final. The original signed and/or sealed electronic file and/or hard copy version archived by TETRA TECH shall be deemed to be the original. TETRA TECH will archive a protected digital copy of the original signed and/or sealed version for a period of 10 years.

Both electronic file and/or hard copy versions of TETRA TECH's Instruments of Professional Service shall not, under any circumstances, be altered by any party except TETRA TECH. TETRA TECH's Instruments of Professional Service will be used only and exactly as submitted by TETRA TECH.

Electronic files submitted by TETRA TECH have been prepared and submitted using specific software and hardware systems. TETRA TECH makes no representation about the compatibility of these files with the Client's current or future software and hardware systems.

1.3 STANDARD OF CARE

Services performed by TETRA TECH for the Professional Document have been conducted in accordance with the Contract, in a manner consistent with the level of skill ordinarily exercised by members of the profession currently practicing under similar conditions in the jurisdiction in which the services are provided. Professional judgment has been applied in developing the conclusions and/or recommendations provided in this Professional Document. No warranty or guarantee, express or implied, is made concerning the test results, comments, recommendations, or any other portion of the Professional Document.

If any error or omission is detected by the Client or an Authorized Party, the error or omission must be immediately brought to the attention of TETRA TECH.

1.4 DISCLOSURE OF INFORMATION BY CLIENT

The Client acknowledges that it has fully cooperated with TETRA TECH with respect to the provision of all available information on the past, present, and proposed conditions on the site, including historical information respecting the use of the site. The Client further acknowledges that in order for TETRA TECH to properly provide the services contracted for in the Contract, TETRA TECH has relied upon the Client with respect to both the full disclosure and accuracy of any such information.

1.5 INFORMATION PROVIDED TO TETRA TECH BY OTHERS

During the performance of the work and the preparation of this Professional Document, TETRA TECH may have relied on information provided by persons other than the Client.

While TETRA TECH endeavours to verify the accuracy of such information, TETRA TECH accepts no responsibility for the accuracy or the reliability of such information even where inaccurate or unreliable information impacts any recommendations, design or other deliverables and causes the Client or an Authorized Party loss or damage.

1.6 GENERAL LIMITATIONS OF DOCUMENT

This Professional Document is based solely on the conditions presented and the data available to TETRA TECH at the time the data were collected in the field or gathered from available databases.

The Client, and any Authorized Party, acknowledges that the Professional Document is based on limited data and that the conclusions, opinions, and recommendations contained in the Professional Document are the result of the application of professional judgment to such limited data.

The Professional Document is not applicable to any other sites, nor should it be relied upon for types of development other than those to which it refers. Any variation from the site conditions present, or variation in assumed conditions which might form the basis of design or recommendations as outlined in this report, at or on the development proposed as of the date of the Professional Document requires a supplementary investigation and assessment.

TETRA TECH is neither qualified to, nor is it making, any recommendations with respect to the purchase, sale, investment or development of the property, the decisions on which are the sole responsibility of the Client.

1.7 ENVIRONMENTAL AND REGULATORY ISSUES

Unless stipulated in the report, TETRA TECH has not been retained to investigate, address, or consider and has not investigated, addressed, or considered any environmental or regulatory issues associated with the development of the site.

1.8 NATURE AND EXACTNESS OF SOIL AND ROCK DESCRIPTIONS

Classification and identification of soils and rocks are based upon commonly accepted systems and methods employed in professional geotechnical practice. This report contains descriptions of the systems and methods used. Where deviations from the system or method prevail, they are specifically mentioned.

Classification and identification of geological units are judgemental in nature as to both type and condition. TETRA TECH does not warrant conditions represented herein as exact, but infers accuracy only to the extent that is common in practice.

Where subsurface conditions encountered during development are different from those described in this report, qualified geotechnical personnel should revisit the site and review recommendations in light of the actual conditions encountered.

1.9 LOGS OF TESTHOLES

The testhole logs are a compilation of conditions and classification of soils and rocks as obtained from field observations and laboratory testing of selected samples. Soil and rock zones have been interpreted. Change from one geological zone to the other, indicated on the logs as a distinct line, can be, in fact, transitional. The extent of transition is interpretive. Any circumstance which requires precise definition of soil or rock zone transition elevations may require further investigation and review.

1.10 STRATIGRAPHIC AND GEOLOGICAL INFORMATION

The stratigraphic and geological information indicated on drawings contained in this report are inferred from logs of test holes and/or soil/rock exposures. Stratigraphy is known only at the locations of the test hole or exposure. Actual geology and stratigraphy between test holes and/or exposures may vary from that shown on these drawings. Natural variations in geological conditions are inherent and are a function of the historic environment. TETRA TECH does not represent the conditions illustrated as exact but recognizes that variations will exist. Where knowledge of more precise locations of geological units is necessary, additional investigation and review may be necessary.

1.11 SURFACE WATER AND GROUNDWATER CONDITIONS

Surface and groundwater conditions mentioned in this report are those observed at the times recorded in the report. These conditions vary with geological detail between observation sites; annual, seasonal and special meteorological conditions; and with development activity. Interpretation of water conditions from observations and records is judgmental and constitutes an evaluation of circumstances as influenced by geology, meteorology and development activity. Deviations from these observations may occur during the course of development activities.

APPENDIX B

SURVEY METHODOLOGIES AND LIMITATIONS

SURVEY METHODOLGIES AND LIMITATIONS

Seismic Refraction Methodology

Seismic investigations rely on the generation of acoustic waves from a source and measurement of the ground response using acoustic receivers, or geophones, at a known geometry. The relative geometry of the source and receivers are known and can be related to the time it takes for the acoustic wave to travel to each receiver. By identifying the first arrival times of the compression (P-) wave, a modelled velocity cross-section can be generated, thereby obtaining the modelled P-wave velocities along the cross-section.

The seismic refraction method is based on acoustic behavior controlled by Snell's Law and results in a cross-section model by analyzing the first arrival time of acoustic waves as received over an array of geophones. Where the apparent velocity of the first arrival wave changes (identified by a change in slope of the first arrival time versus geophone distance), a change in layer type and velocity can be identified.

Refractions can only occur at layer interfaces where velocities increase with depth. In situations where velocities decrease with depth, the lower velocity layer cannot be reliably modelled.

Seismic Refraction Limitations

Inverse Modelling – The inverse modelling process can produce many different valid, geologically realistic models that satisfy the initial conditions. The models used in this data analysis are considered the best models at the time of reporting based upon other available geophysical data and borehole data collected, as well as site observations.

Vertical Resolution – Layers with a vertical dimension that are small relative to the geophone spacing may not be detected due to insufficient horizontal sampling.

Hidden Layers – Governed by Snell's Law, the seismic refraction method can only resolve lithological layers if the velocities of the layers increase with depth. Sometimes this assumption is violated and results in 'hidden' or 'blind' layers that are low velocity layers between two higher velocity layers, or equally, layers that are too thin to be resolved given the velocity contrast present and the geophone geometry used.

Multichannel Analysis of Surface Waves (MASW) Methodology

When a stress is applied to an elastic body (such as a hammer hitting the ground), the corresponding strain propagates outwards as an elastic wave. There are two principal types of elastic waves: body and surface waves. Body waves consist of compressional or P- (primary) waves and S- (shear) waves. The velocities of P- and S-waves (Vp and Vs, respectively), are related to the bulk elastic properties and density of the material. Shear wave velocity is an important parameter that is directly proportional to the shear modulus of a material. It is a measure of stiffness (or rigidity) of that material and is a parameter often used in geotechnical engineering.

In addition to body waves that travel through an elastic medium, there are waves that travel only along the boundary of an elastic solid. There are two common types of surface waves in solids: Rayleigh waves (or ground roll) and Love waves. Rayleigh waves are of interest as their velocity behaviour is controlled by the shear strength of the material supporting the ground roll movement. Rayleigh waves are easily generated and constitute the majority of measurable seismic energy under normal ground conditions. Rayleigh waves have characteristic properties in that they travel in an elliptical retrograde motion in the vertical plane as they propagate along the surface of the elastic medium. The velocity of Rayleigh waves approximates 0.9Vs and can therefore be used to estimate the shear velocities of materials. Geophones are used to record the Rayleigh waves by measuring the vertical particle displacement at the ground surface.

In a layered medium, surface waves have dispersion properties that are not observed with body waves. Dispersion occurs as a result of surface waves being comprised of different wavelengths propagating at different velocities. The propagation velocity of each wavelength is called phase velocity. By analyzing the differing phase velocity characteristics at different frequencies, a dispersion curve can be generated. Short wavelengths have shallow penetration depths, while longer ones have deeper penetration. Therefore, analysis of the fundamental wave energy distribution of the dispersion curve maps a profile of near-surface shear wave velocities. The entire MASW technique thus consists of three fundamental steps: acquisition of ground roll data; imaging of the dispersion curves; and inversion (or back calculation) of shear wave velocities from the interpreted dispersion curves, thus obtaining stiffness parameters.

The end result of a MASW survey is a one-dimensional sounding, providing stiffness parameters at discrete locations, roughly analogous to a series of penetrometer measurements. Although the MASW technique makes use of the lateral dispersion of velocities along the surface (and thus is not a true point measurement), it is assumed to represent a point measurement that is representative of the soil conditions in the immediate vicinity of the array. In areas where a two-dimensional profile is required, a series of constant-offset one-dimensional soundings can be collected and processed together to build up a two-dimensional cross-section of shear wave velocities.

MASW Limitations

Due to the mathematical nature of inverse models, many possible models can satisfy the initial conditions and be considered equally correct in the absence of other data. In this case, the models chosen were deemed to be the optimal models given the available information. Therefore, modelling parameters were selected based on the expected lithology in the region of the survey. The models presented are considered reasonable, given the information available at this time, and represent the simplest interpretation that provides a good match to the measured field values. Other models with different layer thicknesses and seismic parameters may result in similar matches of the modelled data with the field data.

In geophysical modelling, the representation of the deepest layer of the model is referred to as a half-space. For this layer, only the top boundary is defined and the layer is treated mathematically as extending infinitely into the earth. The half-space is considered homogeneous and isotropic. In reality, there are subsequent seismic layers in the earth beyond the last model layer; however, due to geometric limitations of the survey and in situ contrasts between differing layers, they cannot be defined. As long as the seismic properties of the material beneath the final model layer do not differ substantially from those of the final model layer itself, the half-space approximation is considered to be mathematically sound, and the seismic model layers are considered to be a reasonable approximation of the seismic layers within the limits of the survey.

Topography – One of the assumptions of MASW theory is that the entirety of the array is in the same plane. This assumption has to do with the fact that one is measuring time differences with the use of geometry. As long as the changes in topography along the array's plane are less than 10 percent of the total line length, this holds true. Changes in topography did not exceed 10 percent of the total line length for the MASW profile at this site.

Fundamental Mode – An assumption used in the software is that the fundamental mode of the dispersion image is used for analysis. This mode can, at times, be difficult to pick out. It should be reviewed on a shot-by-shot basis to ensure correct interpretation as was done in this evaluation.

Layer Resolution/Aliasing – When spectra with poor low-frequency components are used in data collection over an area with stiff soils, a gradation of shear-wave velocities may be modelled where a sharp interface exists. This is due to the aliasing of these boundaries at depth as the lower frequency waves have too long of a wavelength to distinguish sudden boundaries.

Data Density – As with most surveys, data density should be considered when reviewing the results. Geophone spacing and survey methodology was recorded, reported on, and used in the interpretation process.

Data Coverage/Resolution – There are limitations on vertical resolution and maximum depth based on survey design and site conditions. The minimum vertical resolution (thus minimum depth of investigation) is directly proportional to the geophone interval and the highest frequencies generated by the source (and recorded by the receivers), while the theoretical maximum depth of investigation is proportional to the spread length between the first and last geophone, and the lowest frequencies generated by the source. Thus, maximum and minimum depths of investigation may vary between profiles collected with the same parameters and setups at the same site, because an impulsive, human-driven source, such as the one used in this project, does not guarantee a specific frequency content.

APPENDIX I

Ferry Road Piezometer Hydraulic Conductivity Testing (Tetra Tech Internal Memo June 11, 2021)

INTERNAL MEMO

ISSUED FOR USE

То:	Kirby McRae	Date:	June 11, 2021						
c :		Memo No.:							
From:	Brent Horning	File:	705-1000120300, Task 600.02						
Subject:	Ferry Road Piezometer Hydraulic Conductivity Testing								

1.0 PROJECT BACKGROUND

In order to assess the potential for groundwater inflow into proposed future excavation works for a water and sewer line replacement, hydraulic conductivity analyses were performed at six (6) locations using the piezometers previously installed for geotechnical investigation of the proposed routing. These piezometers were installed along Rutland Street, running north from the Assiniboine River to Silver Avenue. A site plan showing the approximate piezometer locations is provided as Figure 1, attached.

The piezometers consist of 25 mm diameter PVC casings with 300 mm long perforated sections. Five of the piezometers were installed in the overburden, either a soft clay or silt till, at depths of 6.7 m below grade (mbg) to 11.2 mbg. The sixth piezometer was installed in the carbonate bedrock at a depth of 15.5 m below grade. Details relating to the screen section placement are provided in Table 1, attached. Borehole logs showing the stratigraphy encountered and the well construction as prepared by Dyregrov Robinson are included in Appendix A.

2.0 METHODOLOGY

On May 25 and 26, 2020, falling head slug tests were performed on each of the six piezometers, as described below.

- The static water level was measured using an electronic water level meter in relation to top of casing.
- A data logging pressure transducer set to record at two second intervals was placed approximately 0.5 m below the static water level.
- Approximately 4 L of clean tap water was poured into the well casing to create a sudden increase in the water level in the piezometer
- The rate of water drainage through the well screen to restore the water level to its original elevation was recorded by the pressure transducer and confirmed by periodic manual measurements.
- The transducer record was analysed using the AquiferTest Pro software to produce a hydraulic conductivity value for the materials adjacent to the well screen in each location.

3.0 FIELD OBSERVATIONS

Measurement of static water levels in the piezometers completed in the overburden found the water levels to be between 3.25 mbg and 3.53 mbg near the Assiniboine River shoreline, and between 6.45 mbg and 6.94 mbg further inland. Calculation of the associated groundwater elevations showed a variation of between 228.66 m above sea level (ASL) in the northern most piezometer (TH19-240) and 225.37 m ASL in the southern piezometer (TH19-147). The associated groundwater flow direction in the overburden unit is therefore anticipated to be southerly.

The groundwater in the bedrock piezometer (TH19-173) was measured as 7.65 mbg, with a calculated elevation of 227.51 m ASL. With only one measurement point, the potential groundwater flow direction in the carbonate bedrock cannot be determined. It is however noted that the water level in the bedrock is at a lower elevation that the water level in the closest overburden piezometer (TH19-240), suggesting a downward groundwater flow direction between these units.

Depth to groundwater measurements and calculated groundwater elevations are presented in Table 1, attached.

Upon introduction of the clean water into the piezometer casing it was noted that the water dissipated relatively quickly in each of the six piezometers, confirming that the water was being forced out into the surrounding water bearing unit adjacent to the screen section. Review of the piezometer construction details showed that for four of the six piezometers, the static water level was above any sand backfill installed around the screen section, ensuring it was saturated prior to the introduction of water into the piezometer. For the two piezometers located closest to the river (TH19-147 and TH19-148), the sand backfill extended above the static water level, suggesting the possibility that some of the water being introduced in to the casing would infill the sand fill, possibly influencing the initial results of the hydraulic conductivity assessment.

4.0 FALLING HEAD TEST ANALYSIS

Based on the well construction and stratigraphic conditions present, the Hvorselv method of hydraulic conductivity analysis was considered to be appropriate. This method involves the plotting the rate of variation in water level recovery over time in an effort to produce a straight-line semi-log plot. The water level recovery plots are provided in Appendix B. A summary of the resulting hydraulic conductivity values is included in Table 1.

Review of the groundwater level recovery curves found each of the five piezometers completed in the overburden to show a relative consistent pattern with at least two notable recovery stages. The initial straight line portion, extending over between 2 minutes and 10 minutes following water addition is considered to be representative of the hydraulic conductivity of the unit adjacent to the screen section. The secondary straight line portion of the slope is representative of the presence of a boundary condition, most commonly a hydraulic connection with adjacent stratigraphic units. For those two piezometers in which initial saturation of the sand pack adjacent to the piezometer was possibly anticipated (TH19-147 and TH19-148), some initial curve variation was noted, but was of limited duration so is not expected to have impacted the hydraulic conductivity value calculations.

In four of the five overburden piezometers, the initial hydraulic conductivity values were relatively consistent, ranging in value from 3.6×10^{-6} m/s to 8.9×10^{-6} m/s. In the fifth overburden piezometer (TH19-240, located furthest inland), the hydraulic conductivity was lower, with a value of 8.0×10^{-7} m/s. All of these values are consistent with a primarily silt with sand soil condition, as reported in the borehole logs.

In each of the five piezometers completed in the overburden, the secondary slope is representative of an increased hydraulic conductivity. Again the range of hydraulic conductivity is fairly consistent in four of the piezometers, being between 1.3×10^{-5} m/s to 3.6×10^{-5} m/s. The conductivity in the northern most piezometer (TH19-240) is again

notable lower at 2.5 x 10⁻⁶ m/s. These values are still consistent with a silt with sand, but would suggest an increasing sand content.

Review of the groundwater level recovery plot for the piezometer completed in the bedrock (TH19-173) shows a single straight line plot, terminating upon recovery to the original static water level. The calculated hydraulic conductivity of the carbonate bedrock in this location is 3.2×10^{-5} m/s, consistent with a fractured or karstic carbonate rock condition, as noted in the associated borehole log.

5.0 DISCUSSION/ CONCLUSIONS

Hydraulic conductivity testing of the piezometers installed in the overburden suggests that these soils show a variable hydraulic conductivity due to interconnectivity between layers or over lateral extension. The hydraulic conductivities in the saturated overburden extending from the Assiniboine River northward to at least Bruce Avenue, showed an initial average hydraulic conductivity of 6.0×10^{-6} m/s, increasing to an average of 2.5×10^{-5} m/s. In the vicinity of Ness avenue, the overburden showed a lower hydraulic conductivity of 8.0×10^{-7} m/s to 2.5×10^{-6} m/s.

The higher range of secondary hydraulic conductivity values for the overburden units is similar to that calculated for the carbonate bedrock unit (3.2×10^{-5} m/s), suggesting this may be the source of the boundary condition observed in each of the overburden falling head tests.

6.0 LIMITATIONS OF REPORT

This report and its contents are intended for the sole use of the City of Winnipeg and their agents. Tetra Tech Canada Inc. (Tetra Tech) does not accept any responsibility for the accuracy of any of the data, the analysis, or the recommendations contained or referenced in the report when the report is used or relied upon by any Party other than the City of Winnipeg, or for any Project other than the proposed development at the subject site. Any such unauthorized use of this report is at the sole risk of the user. Use of this document is subject to the Limitations on the Use of this Document attached in the Appendix or Contractual Terms and Conditions executed by both parties.

7.0 CLOSURE

We trust this memo meets your present requirements. If you have any questions or comments, please contact the undersigned.

Respectfully submitted, Tetra Tech Canada Inc.

> 705-1000120300-MEM-V0001-01 705-1600120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01

Prepared by: Brent Horning, P.Eng. Sr. Environmental Engineer Direct Line: 204.954.6860 Email: Brent.Horning@tetratech.com

BH/ Attachments

705-1000120300-MEM-V0001-01 705-1000120300/MEM-V0001-01 705-1000120300/MEM-V0001-01 705-1000120300-MEM-V0001-01 705-1000120300-MEM-V0001-01

Reviewed by: Ryan Wizbicki, P.Eng. Manager – Environmental Services Direct Line: 204.954.6930 Email: Ryan.Wizbicki@tetratech.com

Certificate of Authorization Tetra Tech Canada Inc. No. 6499

FIGURES

TABLES

Table 1Summary of Hydraulic Conductivity Test ResultsFerry Road Piezometer Hydraulic Conductivity TestingCity of Winnipeg

	City of Winnipeg													
	Ground Surface Elevation ^a	Screen Section Depth			Static W	/ater Level ^b	Initial Hydraulic Conductivity	Secondary Hydraulic Conductivity						
Piezometer No.	m Above Sea Level	m below grade	m Above Sea Level	Material Adjacent to Screen Section	m below grade	m Above Sea Level	m/ sec	m/ sec						
TH19-147	228.619	6.1 - 6.4	222.2 - 222.5	Silt (Till)	3.25	225.37	7.0 x 10 ⁻⁶	3.0 x 10 ⁻⁵						
TH19-148	230.566	6.1 - 6.4	224.2 - 224.5	Clay (Alluvial) underlain by Sand (alluvial)	3.53	227.04	3.6 x 10 ⁻⁶	3.6 x 10 ⁻⁵						
TH19-155	233.629	12.0 - 12.3	221.3 - 221.6	Silt (Till)	6.59	227.04	4.5 x 10 ⁻⁶	1.3 x 10 ⁻⁵						
TH19-173	235.159	15.2 - 15.5	219.7 - 220.0	Bedrock (Dolomite)	7.65	227.51	3.2 x 10 ⁻⁵	Not Present						
TH19-239	234.083	10.7 - 11.0	223.1 - 223.4	Silt (Till)	6.94	227.14	8.9 x 10 ⁻⁶	2.2 x 10 ⁻⁵						
TH19-240	235.111	9.1 - 9.4	225.7 - 226.0	Silt (Till)	6.45	228.66	8.0 x 10 ⁻⁷	2.5 x 10 ⁻⁶						
Note: ^a Elevatior ^b Water le	ns based on Dyregrov Rol vels measured on May 2	binson Inc. well logs. 5 and 26, 2020.												

TE TETRA TECH

APPENDIX A

DYREGROV ROBINSON BOREHOLE LOGS

EXPLANATION OF TERMS & SYMBOLS

			_			TH Loa	USCS		Laborator	ry Classification Criteria			
			Descripti	on		Symbols	Classification	Fines (%)	Grading	Plasticity	Notes		
			CLEAN GRAVELS	Well graded sandy gravel or no f	d gravels, s, with little ines	2727	GW	0-5	C _U > 4 1 < C _C < 3				
	GRAVELS (More than 50% of coarse fraction of gravel size)	ELS than of	(Little or no fines)	Poorly grade sandy gravel or no f	ed gravels, s, with little ines		GP	0-5	Not satisfying GW requirements		Dual symbols if 5-		
OILS		n of el	DIRTY GRAVELS	Silty gravels, grav	silty sandy els		GM	> 12		Atterberg limits below "A" line or W _P <4	12% fines. Dual symbols if above "A" line and		
AINED SC			(With some fines)	Clayey grav sandy g	els, clayey ravels		GC	> 12		Atterberg limits above "A" line or W _P <7	4 <w<sub>P<7</w<sub>		
ARSE GR	RSE GRA		CLEAN SANDS	Well grade gravelly sand or no f	d sands, s, with little ines	0::0 0:0:1 0:0:0	SW	0-5	C _U > 6 1 < C _C < 3		$C_{U} = rac{D_{60}}{D_{10}}$		
CO4	SAND (More ti 50% d	DS than of	(Little or no fines)	Poorly graded sands, gravelly sands, with little or no fines			SP	0-5	Not satisfying SW requirements		$C_C = \frac{(D_{30})^2}{D_{10} x D_{60}}$		
	coars fractior sand si	se n of ize)	DIRTY SANDS	Silty sands, sand-silt mixtures			SM	> 12		Atterberg limits below "A" line or W _P <4			
			(With some fines)	Clayey sands, sand-clay mixtures			SC	> 12		Atterberg limits above "A" line or W _P <7			
	SILTS (Below line	'S ⁄ ʻA'	W _L <50	Inorganic si clayey fine s slight pla	ts, silty or ands, with asticity		ML						
	negligil organ conter	ible nic nt)	W _L >50	Inorganic silts of high plasticity			МН						
SOILS	CLAY	/S	W _L <30	Inorganic c clays, sand low plasticity	Inorganic clays, silty clays, sandy clays of ow plasticity, lean clays		CL						
BRAINED	(Above) line negligil organ	ible	30 <w<sub>L<50</w<sub>	Inorganic cla clays of r plasti	ys and silty nedium city		СІ			Classification is Based upon Plasticity Chart			
FINE 0	conter	nt)	W _L >50	Inorganic cla plasticity,	ays of high fat clays		СН						
	ORGAN SILTS	NIC 3 & /S	W _L <50	Organic s organic silty o plasti	ilts and clays of low city		OL						
	(Below line)	/ 'A')	W _L >50	Organic cla plasti	ys of high city		ОН						
н	IIGHLY C	ORGA	NIC SOILS	Peat and ot organic	her highly soils		Pt	V Classi	on Post fication Limit	Strong colour o fibrou	r odour, and often s texture		
			Asphalt		GI	acial Till		B (lg	edrock Ineous)				
			Concrete		Cl	ay Shale		B (Lin	edrock nestone)	DYREGROV R CONSULTING GEOT	COBINSON INC. ECHNICAL ENGINEERS		
×	Fill						B (Undif	edrock ferentiated)					

TERMS and SYMBOLS

Laboratory and field tests are identified as follows:

Unconfined Comp.: undrained shear strength (kPa or psf) derived from unconfined compression testing.

Torvane: undrained shear strength (kPa or psf) measured using a Torvane

Pocket Pen.: undrained shear strength (kPa or psf) measured using a pocket penetrometer.

Unit Weight bulk unit weight of soil or rock (kN/m³ or pcf).

SPT – N Standard Penetration Test: The number of blows (N) required to drive a 51 mm O.D. split barrel sampler 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.

- **DCPT** Dynamic Cone Penetration Test. The number of blows (N) required to drive a 50 mm diameter cone 300 mm into the soil using a 63.5 kg hammer with a free fall drop height of 760 mm.
- M/C insitu soil moisture content in percent
- PL Plastic limit, moisture content in percent
- LL Liquid limit, moisture content in percent

The undrained shear strength (Su) of cohesive soil is related to its consistency as follows:

Su (kPa)	Su (psf)	CONSISTENCY					
<12	250	very soft					
12 – 25	250 – 525	soft					
25 – 50	525 – 1050	firm					
50 – 100	1050 – 2100	stiff					
100 – 200	2100 – 4200	very stiff					
200	4200	hard					

The SPT - N of non-cohesive soil is related to compactness condition as follows:

N – Blows / 300 mm	COMPACTNESS
0 - 4	very loose
4 - 10	loose
10 - 30	compact
30 - 50	dense
50 +	very dense

References:

ASTM D2487 - Classification of Soils For Engineering Purposes (Unified Soil Classification System)

Canadian Foundation Engineering Manual, 4th Edition, Canadian Geotechnical Society, 2006

PROJECT: Ferry Rd. & Riv	PROJECT: Ferry Rd. & Riverbend CSR - Rutland Trunk Sewer CLIENT: Tetra Tech Canada Inc.										
LOCATION: UTM 14U: 552	26115 m N, 627781	m E				PROJEC	CT NO.: 143691				
CONTRACTOR: Paddock	Drilling Ltd.	METHOD: ACKER	SS Drill Rig w/12	25 mm SS & 200mm HS A	ugers	ELEVAT	TON (m): 228.619				
SAMPLE TYPE	GRAB					RECOVER	Y CORE				
BACKFILL TYPE	BENTONITE	GRAVEL	SLOUGH	GROUT	∐cu-	TTINGS	SAND				
ELEVATION (m) DEPTH (m) sLOTTED PIEZOMETER SOIL SYMBOL		SOIL E	SAMPLE TYPE SAMPLE #	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m ³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 10 20 30 40 50 60 70							
2228 -1 -2227 -2 -2 -2 -2 -2 -2 -2 -2 -2 -2	CLAY (ALLUVIAL brown dry to moist intermediate plas some silt below SILT (ALLUVIAL) brown moist, loose grey and wet bel SILT (TILL) - trace grey, wet, loose compact and mo dense at 6 m END OF TEST HO NOTES: . Some sloughing to Switched to holl Switched to holl Switched to holl Some pipe (T.C Vater levels: September 23, 20 November 13, 20) - silty, trace sand sticity 1 m - some clay, some ow 4 m - sand, trace grave ist below 5.5 m DLE AT 6.7 m IN S g and seepage ob 5.8 m, hole caved ow stem (HS) aug andpipe piezomete D.P) 0.91 m above 19: 3.93 m below 19: 2.70 m below	e sand El SILT(TILL) (AU served at 4 m. iers at 5.8 m. er w/ Cassagra grade. 7 T.O.P Groun T.O.P Groun	GER REFUSAL) ande tip installed 6.7 m nd water elevation - 22 d water elevation - 220	n b/l grad 25.60 m 3.83 m	G304					
DYREGROV Consulting Geoted	ROBINSO Chnical Engined	N INC. ers	L F F	ogged by: Cr Eviewed by: Draft Roject Engineer: Gil Ro	obinson	COMPLE COMPLE	TION DEPTH: 6.71 m TION DATE: 30-7-19 Page 1 of 1				

PRO.	IECT:	Ferry	Rd. & F	Riverbend CSR - Ru	utland Trunk Sewer	CLIENT:	Tetra Tec	h Cai	nad	la Inc.	TEST H	TEST HOLE NO: 19-148				
LOCA	TION:	UTN	1 14U: 5	526210 m N, 62776	53 m E							PROJECT NO.: 143691				
CON		OR:	Paddoc	k Drilling Ltd.			/125 mm S	S&2 ⊐⊡	200r	mm HS Augers	ELEVA	FION (m): 230.566				
BACK				GRAB												
ELEVATION (m)	DEPTH (m)	SLOTTED PIEZOMETER	SOIL SYMBOL		TION	<u></u>	SAMPLE TYPE SAMPLE # SAMPLE #		+ Torvane (Su) kl 10 20 30 40 50 △ Pocket Pen. (Su)	Pa + 60 70 kPa ∆	 ◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 					
					mm thick) - black	dry			_	10 20 30 40 50	60 70	10 20 30 40 50 60 70				
-229 -228 -227 -226 -227 -226 -225 -225 -224 -223	1 2 3 4 5 6 7 8			 IOPSOIL (150) CLAY (Alluvial) black with trac dry to moist brown below 1 moist, stiff bve intermediate to intermediate to grey, wet, soft SAND (Alluvial) brown, wet, loo CLAY (Glaciolad) grey moist, firm to s SILT (TILL) - tra grey, wet, loos dense at 9 m 	mm thick) - black, - - some silt to silty e organics to 1.5 n .5 m coming firm below b high plasticity (va below 5.2 m below 5.2 m <u>osee, coarse grainer</u> custrine) - silty tiff, high plasticity ce sand, trace gra e becoming moist	dry n 3 m iriable) d d vel and dense to	very		293 294 295 296 297 298 299 300 300 300							
- TATE - AL	9							Xs:	303			•				
ECH PLOTS-AUGUST 2013 143691.7_RUTLAND TRUNK_GINT.GPJ DATA TEMI				END OF TEST I NOTES: 1. Some slough 2. After drilling t Switched to he 4. 25 mm PVC S Top of pipe (T.C Water levels: September 23, 2 November 13, 2	HOLE AT 9.6 m IN ing and seepage o o 8.8 m, hole cave ollow stem (HS) au Standpipe piezome 0.P) 0.05 m below 2019: 4.13 m below 019: 3.52 m below	SILT(TILL) (A observed. d to 5 m. igers at 8.8 m eter w/ Cassag grade. w T.O.P Grou / T.O.P Grou	ound water	inst er ele	alle eva	AL) ed 6.4 m b/l grac ation at 226.436 ion at 227.046 m	de. m 1					
D BH GEOI	YRI onsul	E GI ting	ROV Geote	ROBINSC echnical Engin	DN INC. eers	REVIEWE	D BY: ENGI	DF	RAFT ER: Gil Robinson	COMPLE	TION DATE: 29-7-19 Page 1 of 1					

PRO	JECT:	Ferry Rd.	& Riverbend CSR - R	utland Trunk Sewer	Tetra Tech	Cana	da Inc.				-173		
CON	TRAC	TOR: Pade	1. 5527675 111 N, 6276 lock Drilling I td		R MP8 Drill w/12	5 mm SS Au	iners	& HO corin	a	FI FVA	TION (m) · 23	35 159	
SAME		YPE	GRAB				BULK			RECOVER)RE	
BACK	KFILL -	TYPE	BENTONITE	GRAVEL	SLOUGH		GROU	Г		TTINGS	ND		
(m) NO	(m) T	ED ETER 'MBOL					LE #	+ Ton <u>10 20 3</u>	vane (Su) k 0 40 50	Pa + 60 70	◆ SPT N I 10 20 30	olows/300r 40 50	mm ♦ 60 70
ELEVATI	DEPTI	PIEZOM SOIL SY		SOIL DESCRIF	TION		SAMP	▲ Unconfin <u>10 20 3</u> △ Pocke	ed Comp. (<u>0 40 50</u> et Pen. (Su)	Su) kPa ▲ <u>60 70</u> kPa ∆	■ Unit W 12 14 16 PL M	'eight kN/r <u>18 20</u> ^{M/C} (%)	m³∎ <u>22 2</u> 4 LL
				and thick) block a	: - +			10 20 3	<u>10 40 50</u>	<u>60 70</u>	10 20 30	40 50	60 70
-235	1		CLAY - silty - black with trac - mottled brown - moist, stiff, hig - trace silt inclu	nm tnick) - black, n ce organics to 1.8 r a / grey below 1.8 n gh plasticity sions	noist n n		G490 G491				•		
-233	2					-	G492					•	
-232	3						T493			≙ ·····		.	
-231	-4						G494	· · · · · · · · · · · · · · · · · · ·					
230 	6		SILT (TILL) - tra - grey - moist to wet, I - moist, dense t	ace sand, trace gra oose to very dense belov	avel w 7 m		■G498						
UGUST 2, 2013.GD	7		S497) SPT stop 150 mm penetr	oped, sampler bou ation	ncing after 50 l	∠ blows & ≥	<s496 ≤s497</s496 	· · · · · · · · · · · · · · · · · · ·					
	8						C518						
	10						S519				•		
	-11					\geq	6 521				•		•
7 2013 143691.7 7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	-12		 S523) SPT stop for 380 mm per 	oped, sampler bou netration	ncing after 39 l	blows	C522 (5523				•		
	-13						C524						
	VP	FGPO				LOGGED BY	: CR			COMPLE	ETION DEPTH	: 15.54	m
		tina Geo	technical Fnair	neers		REVIEWED	BY: D		ainaar	COMPLE	ETION DATE:	15-8-19	0.1.05.0
±						PROJECT E	NGINE	EK: GII RO	JINSON			Pag	e i of 2

PROJECT: Ferry Rd. 8	Riverbend CSR - Rutl	and Trunk Sewer	CLIENT: Tetra	Tech Ca	anac	da Inc.	TEST HO	OLE NO: 19-173			
LOCATION: UTM 14U	5527675 m N, 627822	2 m E		PROJECT NO.: 143							
CONTRACTOR: Padde	ock Drilling Ltd.	METHOD: ACKER	MP8 Drill w/125 mm	SS Aug	ers &	& HQ coring	ELEVATION (m): 235.159				
SAMPLE TYPE	GRAB	SHELBY TUBE	SPLIT SPOON	BL	JLK	∠ NO	RECOVERY	Y CORE			
BACKFILL TYPE	BENTONITE	GRAVEL	SLOUGH	G	ROUT	r 🛛 🖾 cu	TTINGS	SAND			
ELEVATION (m) DEPTH (m) sLOTTED PIEZOMETER SOIL SYMBOL	S	OIL DESCRIPT	ION	SAMPLE TYPE	SAMPLE #	+ Torvane (Su) kf <u>10 20 30 40 50</u> ▲ Unconfined Comp. (\$ <u>10 20 30 40 50</u> △ Pocket Pen. (Su) <u>10 20 30 40 50</u>	Pa + <u>60</u> 70 Su) kPa ▲ <u>60</u> 70 kPa △ <u>60</u> 70	◆ SPT N blows/300mm ◆ 10 20 30 40 50 60 70 ■ Unit Weight kN/m ³ ■ 12 14 16 18 20 22 24 PL M/C (%) LL 10 20 30 40 50 60 70			
	BEDROCK - Red River Form (dolomite) - poor to good qu - whitish grey cold - horizontal and v - close to moderal - gapped to open (Class 3) - 3 mm thick clay - trace small vugs page END OF TEST H Notes: 1. No sloughing co 2. Upon completing 3. Auger refusal co 4. 25 mm PVC St Top of pipe (T.O.) Water levels: September 23, 20 November 13, 20	ation, Upper Fort C ality, good below 1 for, strong to very si rertical fractures itely close discontin joint apeture, evide filling at 13.7 m and s (< 0.5mm) continue OLE AT 15.5 m IN or seepage observed on of drilling with a occured at 7.5 m, s tandpipe piezomete P) 0.05 m below gr 019: 8.43 m below 19: 6.44 m below T	Garry Member 4 m trong nuity spacing ence of water flow ad 13.9 m ued from previous BEDROCK ed during driling wi ugers, test hole op switched to HQ col er w/ Cassagrander rade. rT.O.P Ground w T.O.P Ground w	th aug ben to ring with tip ins vater ele	ers. 7.5 th ca stalle	m b/l grade, dry. asing advancer. ed 15.5 m b/l gra ation at 226.679 n	ade.				
DYREGRO Consulting Geo	V ROBINSO technical Engine	N INC. ers	REVIE		C: DF	RAFT FR: Gil Robinson	COMPLE	TION DATE: 15-8-19 Page 2 of 2			

PROJ		Ferry	/ Rd. & I	Riverbend CSR - Ru	tland Trunk Sewer	CLIENT:	Tetra Tech	n Ca	anac	da Inc.		TEST H		IO: 19	-239				
CONT	TRACT		Paddoo	:k Drilling I td		R SS Drill w/125	mm SS Au	ner	s			FLEVAT	CION (r	n) 23	4 083				
SAMF	PLE TY	'PE		GRAB				BL	JLK			RECOVER	Y		RE				
BACK	(FILL 1	YPE		BENTONITE	GRAVEL	SLOUGH	•	GI	ROUT	Г	CU	UTTINGS SAND							
ELEVATION (m)	DEPTH (m)	SLOTTED	SOIL SYMBOL	ç	SOIL DESCRIF	PTION		SAMPLE TYPE	SAMPLE #	+ 10 20 ▲ Unco 10 20 △ P	· Torvane (Su) kPa + <u>9 30 40 50 60 70</u> onfined Comp. (Su) kPa ▲ <u>9 30 40 50 60 70</u> Pocket Pen. (Su) kPa △		10 12	SPT N b 20 30 ■ Unit We 14 16 PL M 20 20	lows/300n 40 50 eight kN/n 18 20	nm ♦ 60 70 1 ³ ■ 22 24 LL	1		
			~~~~~		25 mm thick)				3369	10 20	<u>0 30 40 50</u>	<u>6070</u>	10	<u>20 30</u>	40 50	<u>60 70</u>	<u>)</u> 		
-233	-1			SAND and GRA CLAY - silty, trac - black, moist, s SILT - brown, m	VEL (FILL, 100 m ce organics tiff, high plasticity oist to wet, loose	im thick) - brov	vn /		G370	)			· · · · · · · · · · · · · · · · · · ·						
-232	-2			CLAY - silty - mottled brown - moist, stiff, hig	and grey h plasticity										X		 		
231	-3				6110118				G371						•				
230	-4						-												
-229	5						-		T372		· · · · · · · · · · · · · · · · · · ·	····+ <u>A</u> ··	· · · · · · · · · · · · · · · · · · ·				 		
228	6			- grey below 6 n	1				53/3								· · · · ·		
227	-7						•		G374						•				
226	-8								G375			•••••							
225	-9																 		
224	-10			SILT (TILL) - tra - grey, wet, loos	ce sand, trace gra e becoming comp	avel bact with depth	5	$\times$	G376 S377				•	•					
	END OF TEST HOLE AT 11.2 m IN SILT(TILL) (AUGER REFUSAL) NOTES: 1. Some sloughing and seepage observed silt layer 0.6 m. 2. Upon completion of drilling, test hole open to 11 m b/l grade, water level 7.9 m b/l grade. 4. 25 mm PVC Standpipe piezometer w/ Cassagrande tip installed 11 m b/l grade. Top of pipe (T.O.P) 0.05 m below grade. Water levels: September 23, 2019: 7.66 m below T.O.P Ground water elevation at 226.373 m November 13, 2019: 5.50 m below T.O.P Ground water elevation at 228.533 m																		
D	YRI	EG	ROV	ROBINSC	ON INC.		REVIEWED	Y: BY	<u>CR</u> (: DF	RAFT			TION E	DATE:	11.13 r 1-8-19	n			
<u>C</u>	onsul	ting	Geot	echnical Engin	eers		PROJECT E	ENC	GINE	ER: Gil	Robinson				Page	e 1 of	1		



## APPENDIX B

## HYDRAULIC CONDUCTIVITY GRAPHS



























DYREGROV ROBINSON INC. 1692 Dublin Ave #1, Winnipeg, MB, Canada R3H 1A8 204.632.7252 DRIGEOTECHNICAL.CA